Skip to main content
Log in

Inhibition of the adenylyl cyclase toxin, edema factor, from Bacillus anthracis by a series of 18 mono- and bis-(M)ANT-substituted nucleoside 5′-triphosphates

  • ORIGINAL ARTICLE
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Bacillus anthracis causes anthrax disease and exerts its deleterious effects by the release of three exotoxins, i.e. lethal factor, protective antigen and edema factor (EF), a highly active calmodulin-dependent adenylyl cyclase (AC). Conventional antibiotic treatment is ineffective against either toxaemia or antibiotic-resistant strains. Thus, more effective drugs for anthrax treatment are needed. Our previous studies showed that EF is differentially inhibited by various purine and pyrimidine nucleotides modified with N-methylanthraniloyl (MANT)- or anthraniloyl (ANT) groups at the 2′(3′)-O-ribosyl position, with the unique preference for the base cytosine (Taha et al., Mol Pharmacol 75:693 (2009)). MANT-CTP was the most potent EF inhibitor (K i, 100 nM) among 16 compounds studied. Here, we examined the interaction of EF with a series of 18 2′,3′-O-mono- and bis-(M)ANT-substituted nucleotides, recently shown to be very potent inhibitors of the AC toxin from Bordetella pertussis, CyaA (Geduhn et al., J Pharmacol Exp Ther 336:104 (2011)). We analysed purified EF and EF mutants in radiometric AC assays and in fluorescence spectroscopy studies and conducted molecular modelling studies. Bis-MANT nucleotides inhibited EF competitively. Propyl-ANT-ATP was the most potent EF inhibitor (K i, 80 nM). In contrast to the observations made for CyaA, introduction of a second (M)ANT-group decreased rather than increased inhibitor potency at EF. Activation of EF by calmodulin resulted in effective fluorescence resonance energy transfer (FRET) from tryptophan and tyrosine residues located in the vicinity of the catalytic site to bis-MANT-ATP, but FRET to bis-MANT-CTP was only small. Mutations N583Q, K353A and K353R differentially altered the inhibitory potencies of bis-MANT-ATP and bis-MANT-CTP. The nucleotide binding site of EF accommodates bulky bis-(M)ANT-substituted purine and pyrimidine nucleotides, but the fit is suboptimal compared to CyaA. These data provide a basis for future studies aiming at the development of potent EF inhibitors with high selectivity relative to mammalian ACs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AC:

Adenylyl cyclase

mAC:

Membranous adenylyl cyclase

ANT:

Anthraniloyl

CaM:

Calmodulin

CyaA:

Bordetella pertussis adenylyl cyclase toxin

DMSO:

Dimethyl sulphoxide

MANT:

Methylanthraniloyl

EF:

Edema factor adenylyl cyclase toxin from Bacillus anthracis

EF3:

Catalytic domain of edema factor adenylyl cyclase toxin (amino acids 291–800)

FRET:

Fluorescence resonance energy transfer

PMEApp:

9-[2-(phosphomonomethoxy)ethyl]adenine diphosphate

Pr:

Propyl

References

  • Atlas RM (2002) Bioterriorism: from threat to reality. Annu Rev Microbiol 56:167–185

    Article  PubMed  CAS  Google Scholar 

  • Brossier F, Weber-Levy M, Mock M, Sirard JC (2000) Role of toxin functional domains in anthrax pathogenesis. Infect Immun 68:1781–1786

    Article  PubMed  CAS  Google Scholar 

  • Clark M, Cramer RD III, Van Opdenbosch N (1989) Validation of the general purpose Tripos 5.2 force field. J Comp Chem Soc 10:982–1012

    CAS  Google Scholar 

  • Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KMJ, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force field for the simulation of proteins and nucleic acids. J Am Chem 117:5179–5197

    Article  CAS  Google Scholar 

  • Dixon TC, Meselson M, Guillemin J, Hanna PC (1999) Anthrax. N Engl J Med 341:815–826

    Article  PubMed  CAS  Google Scholar 

  • Drum CL, Yan SZ, Bard J, Shen YQ, Lu D, Soelaiman S, Grabarek Z, Bohm A, Tang WJ (2002) Structural basis for the activation of anthrax adenylyl cyclase exotoxin by calmodulin. Nature 415:396–402

    Article  PubMed  CAS  Google Scholar 

  • Geduhn J, Dove S, Shen Y, Tang WJ, König B, Seifert R (2011) Bis-halogen-anthraniloyl-substituted nucleoside 5′-triphosphates as potent and selective inhibitors of Bordetella pertussis adenylyl cyclase toxin. J Pharmacol Exp Ther 336:104–115

    Article  PubMed  CAS  Google Scholar 

  • Ghose AK, Viswanadhan VN, Wendoloski J (1998) Prediction of hydrophobic (lipophilic) properties of small organic molecules using fragmental methods: an analysis of ALOGP and CLOGP. J Phys Chem 102:3762–3772

    Article  CAS  Google Scholar 

  • Gille A, Lushington GH, Mou TC, Doughty MB, Johnson RA, Seifert R (2004) Differential inhibition of adenylyl cyclase isoforms and soluble guanylyl cyclase by purine and pyrimidine nucleotides. J Biol Chem 279:19955–19969

    Article  PubMed  CAS  Google Scholar 

  • Gille A, Guo J, Mou TC, Doughty MB, Lushington GH, Seifert R (2005) Differential interactions of G-proteins and adenylyl cyclase with nucleoside 5′-triphosphates, nucleoside 5′-[γ-thio]triphosphates and nucleoside 5′-[β, γ-imido]triphosphates. Biochem Pharmacol 71:89–97

    Article  PubMed  CAS  Google Scholar 

  • Göttle M, Dove S, Steindel P, Shen Y, Tang WJ, Geduhn J, König B, Seifert R (2007) Molecular analysis of the interaction of Bordetella pertussis adenylyl cyclase with fluorescent nucleotides. Mol Pharmacol 72:526–535

    Article  PubMed  Google Scholar 

  • Göttle M, Dove S, Kees F, Schlossmann J, Geduhn J, König B, Shen Y, Tang WJ, Kaever V, Seifert R (2010) Cytidylyl and uridylyl cyclase activity of Bacillus anthracis edema factor and Bordetella pertussis CyaA. Biochemistry 49:5494–5503

    Article  PubMed  Google Scholar 

  • Guidi-Rontani C, Levy M, Ohayon H, Mock M (2001) Fate of germinated Bacillus anthracis spores in primary murine macrophages. Mol Microbiol 42:931–938

    Article  PubMed  CAS  Google Scholar 

  • Guo Q, Shen Y, Zhukovskaya NL, Florian J, Tang WJ (2004) Structural and kinetic analyses of the interaction of anthrax adenylyl cyclase toxin with reaction products cAMP and pyrophosphate. J Biol Chem 279:29427–29435

    Article  PubMed  CAS  Google Scholar 

  • Guo Q, Shen Y, Lee YS, Gibbs CS, Mrksich M, Tang WJ (2005) Structural basis for the interaction of Bordetella pertussis adenylyl cyclase toxin with calmodulin. EMBO J 24:3190–3201

    Article  PubMed  CAS  Google Scholar 

  • Heiden W, Moeckel G, Brickmann J (1993) A new approach to analysis and display of local lipophilicity/hydrophilicity mapped on molecular surfaces. J Comput Aided Mol Des 7:503–514

    Article  PubMed  CAS  Google Scholar 

  • Hiratsuka T (1983) New ribose-modified fluorescent analogs of adenine and guanine nucleotides available as substrates for various enzymes. Biochim Biophys Acta 742:496–508

    Article  PubMed  CAS  Google Scholar 

  • Hübner M, Dixit A, Mou TC, Lushington GH, Pinto C, Gille A, Geduhn J, König B, Sprang SR, Seifert R (2011) Structural basis for the high-affinity inhibition of mammalian membranous adenylyl cyclase by 2′,3′-O-(N-methylanthraniloyl)-inosine 5′-triphosphate. Mol Pharmacol 80:87–96

    Article  PubMed  Google Scholar 

  • Jameson DM, Eccleston JF (1997) Fluorescent nucleotide analogs: synthesis and applications. Methods Enzymol 278:363–390

    Article  PubMed  CAS  Google Scholar 

  • Jedrzejas MJ (2002) The structure and function of novel proteins of Bacillus anthracis and other spore-forming bacteria: development of novel prophylactic and therapeutic agents. Crit Rev Biochem Mol Biol 37:339–373

    Article  PubMed  CAS  Google Scholar 

  • Johnson RA, Shoshani I (1990) Inhibition of Bordetella pertussis and Bacillus anthracis adenylyl cyclases by polyadenylate and “P”-site agonists. J Biol Chem 265:19035–19039

    PubMed  CAS  Google Scholar 

  • Lee YS, Bergson P, He WS, Mrksich M, Tang WJ (2004) Discovery of a small molecule that inhibits the interaction of anthrax edema factor with its cellular activator, calmodulin. Chem Biol 11:1139–1146

    Article  PubMed  CAS  Google Scholar 

  • Mou TC, Gille A, Fancy DA, Seifert R, Sprang SR (2005) Structural basis for the inhibition of mammalian membrane adenylyl cyclase by 2 ′(3′)-O-(N-methylanthraniloyl)-guanosine 5′-triphosphate. J Biol Chem 280:7253–7261

    Article  PubMed  CAS  Google Scholar 

  • Mou TC, Gille A, Suryanarayana S, Richter M, Seifert R, Sprang SR (2006) Broad specificity of mammalian adenylyl cyclase for interaction with 2′,3′-substituted purine- and pyrimidine nucleotide inhibitors. Mol Pharmacol 70:878–886

    Article  PubMed  CAS  Google Scholar 

  • Shen Y, Lee YS, Soelaiman S, Bergson P, Lu D, Chen A, Beckingham K, Grabarek Z, Mrksich M, Tang WJ (2002) Physiological calcium concentrations regulate calmodulin binding and catalysis of adenylyl cyclase exotoxins. EMBO J 21:6721–6732

    Article  PubMed  CAS  Google Scholar 

  • Shen Y, Zhukovskaya NL, Guo Q, Florian J, Tang WJ (2005) Calcium-independent calmodulin binding and two-metal-ion catalytic mechanism of anthrax edema factor. EMBO J 24:929–941

    Article  PubMed  CAS  Google Scholar 

  • Spangler CM, Spangler C, Göttle M, Shen Y, Tang WJ, Seifert R, Schäferling M (2008) A fluorimetric assay for real-time monitoring of adenylyl cyclase activity based on terbium norfloxacin. Anal Biochem 381:86–93

    Article  PubMed  CAS  Google Scholar 

  • Taha HM, Schmidt J, Göttle M, Suryanarayana S, Shen Y, Tang WJ, Gille A, Geduhn J, König B, Dove S, Seifert R (2009) Molecular analysis of the interaction of anthrax adenylyl cyclase toxin, edema factor, with 2′(3′)-O-(N-(methyl)anthraniloyl)-substituted purine and pyrimidine nucleotides. Mol Pharmacol 75:693–703

    Article  PubMed  CAS  Google Scholar 

  • Tang WJ, Guo Q (2009) The adenylyl cyclase activity of anthrax edema factor. Mol Aspects Med 30:423–430

    Article  PubMed  CAS  Google Scholar 

  • Wang JL, Guo JX, Zhang QY, Wu JJ, Seifert R, Lushington GH (2007) A conformational transition in the adenylyl cyclase catalytic site yields different binding modes for ribosyl-modified and unmodified nucleotide inhibitors. Bioorg Med Chem 15:2993–3002

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Deutsche Forschungsgemeinschaft grant Se 529/5-2 to R. S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Seifert.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

 (DOC 2748 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taha, H., Dove, S., Geduhn, J. et al. Inhibition of the adenylyl cyclase toxin, edema factor, from Bacillus anthracis by a series of 18 mono- and bis-(M)ANT-substituted nucleoside 5′-triphosphates. Naunyn-Schmiedeberg's Arch Pharmacol 385, 57–68 (2012). https://doi.org/10.1007/s00210-011-0688-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-011-0688-9

Keywords

Navigation