Skip to main content
Log in

Dynamic asymptotic dimension: relation to dynamics, topology, coarse geometry, and \(C^*\)-algebras

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We introduce dynamic asymptotic dimension, a notion of dimension for actions of discrete groups on locally compact spaces, and more generally for locally compact étale groupoids. We study our notion for minimal actions of the integer group, its relation with conditions used by Bartels, Lück, and Reich in the context of controlled topology, and its connections with Gromov’s theory of asymptotic dimension. We also show that dynamic asymptotic dimension gives bounds on the nuclear dimension of Winter and Zacharias for \(C^*\)-algebras associated to dynamical systems. Dynamic asymptotic dimension also has implications for K-theory and manifold topology: these will be drawn out in subsequent work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. This means that if \(gx=x\) for some \(g\in \Gamma \) and \(x\in X\), then \(g=e\) is the identity element of \(\Gamma \).

  2. As will be clear from the proof, one can replace nuclear dimension with decomposition rank here, but we will not need this distinction.

  3. The cited paper only covers the second countable case, but the second countability assumption is unnecessary when the groupoid is étale: see [13].

  4. If A is a \(C^*\)-algebra faithfully represented on a Hilbert space H, and IJ are non-zero orthogonal ideals in A, then \(I\cdot H\) and \(J\cdot H\) are A-invariant non-zero subspaces of H; in particular, the representation is reducible.

References

  1. Bartels, A: On proofs of the Farrell-Jones conjecture. arXiv:1210.1044v1 (2012)

  2. Bartels, A., Lück, W.: The Borel conjecture for hyperbolic and CAT(0)-groups. Ann. Math. 175(2), 631–689 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bartels, A., Lück, W., Reich, H.: Equivariant covers for hyperbolic groups. Geom. Topol. 12, 1799–1882 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bell, G., Dranishnikov, A.: Asymptotic dimension. Topology Appl. 155(12), 1265–1296 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bosa, J., Brown, N., Sato, Y., Tikuisis, A., White, S., Winter, W.: Covering dimension of \({C}^*\)-algebras and 2-coloured classification. arXiv:1506.03974 (2015)

  6. Brown, N., Ozawa, N.: \({C}^*\)-Algebras and Finite-Dimensional Approximations. Graduate Studies in Mathematics, vol. 88. American Mathematical Society, Providence (2008)

    MATH  Google Scholar 

  7. Dadarlat, M., Guentner, E.: Uniform embeddability of relatively hyperbolic groups. J. Reine Angew. Math. 612, 1–15 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dixmier, J.: \({C^*}\)-Algebras. North Holland Publishing Company, Amsterdam (1977)

    MATH  Google Scholar 

  9. Elliott, G.: The classification problem for amenable \({C}^*\)-algebras. Proc. Int. Congr. Math. 1(2), 922–932 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Elliott, G., Gong, G., Lin, H., Niu, Z.: On the classification of simple amenable \({C^*}\)-algebras with finite decomposition rank, II. arXiv:1507.03437 (2015)

  11. Elliott, G., Niu, Z.: The \({C}^*\)-algebra of a minimal homeomorphism of zero mean dimension. arXiv:1406.2383v2 (2014)

  12. Farrell, T., Jones, L.: \({K}\)-theory and dynamics I. Ann. Math. 124(2), 531–569 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  13. Felix, R.: Renault’s equivalence theorem for \({C}^*\)-algebras of étale groupoids. Master’s thesis, University of Hawai‘i at Mānoa (2014)

  14. Gromov, M.: Asymptotic invariants of infinite groups. In: Niblo, G., Roller, M. (eds.) Geometric Group Theory, vol. 2. London Mathematical Society, London (1993)

    Google Scholar 

  15. Guentner, E., Tessera, R., Yu, G.: A notion of geometric complexity and its application to topological rigidity. Invent. Math. 189(2), 315–357 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Guentner, E., Willett, R., Yu, G.: Dynamic asymptotic dimension and controlled operator K-theory. Working draft (2015)

  17. Higson, N.: Bivariant \({K}\)-theory and the Novikov conjecture. Geom. Funct. Anal. 10, 563–581 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Higson, N., Roe, J.: Amenable group actions and the Novikov conjecture. J. Reine Angew. Math. 519, 143–153 (2000)

    MathSciNet  MATH  Google Scholar 

  19. Hirshberg, I., Winter, W., Zacharias, J.: Rokhlin dimension and \({C^*}\)-dynamics. Comm. Math. Phys. 335, 637–670 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hirshberg, I., Wu, J.: The nuclear dimension of \({C^*}\)-algebras associated to homeomorphisms. arXiv:1509.01508. With an appendix by Gabor Szabó (2015)

  21. Kirchberg, E., Winter, W.: Covering dimension and quasidiagonality. Intern. J. Math. 15, 63–85 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Massey, W.: Algebraic Topology: An Introduction. Springer, Berlin (1977)

    MATH  Google Scholar 

  23. Muhly, P., Renault, J., Williams, D.: Equivalence and isomorphism for groupoid \({C}^*\)-algebras. J. Oper. Theory 17, 3–22 (1987)

    MathSciNet  MATH  Google Scholar 

  24. Nowak, P., Yu, G.: Large scale geometry. In: EMS Textbooks in Mathematics, European Mathematical Society (EMS), Zürich (2012)

  25. Ozawa, N.: Amenable actions and exactness for discrete groups. C. R. Acad. Sci. Paris Sér. I Math. 330, 691–695 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pears, A.: Dimension Theory of General Spaces. Cambridge University Press, Cambridge (1975)

    MATH  Google Scholar 

  27. Putnam, I.: The \({C^*}\)-algebras associated with minimal homeomorphisms of the Cantor set. Pac. J. Math. 136(2), 329–353 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  28. Renault, J.: A Groupoid Approach to \({C}^*\)-Algebras. Lecture Notes in Mathematics, vol. 793. Springer, Berlin (1980)

    Book  MATH  Google Scholar 

  29. Renault, J.: The ideal structure of groupoid crossed product \({C^*}\)-algebras. J. Oper. Theory 25, 3–36 (1991)

    MathSciNet  MATH  Google Scholar 

  30. Renault, J.: \({C}^*\)-algebras and dynamical systems. Publicações Mathemáticas do IMPA, 27\(^\circ \) Colóquio Brasilieiro de Mathemática. Instituto Nacional de Matemática Pura e Aplicada (2009)

  31. Roe, J.: Lectures on Coarse Geometry. University Lecture Series, vol. 31. American Mathematical Society, Providence (2003)

    MATH  Google Scholar 

  32. Roe, J.: Hyperbolic groups have finite asymptotic dimension. Proc. Am. Math. Soc. 133(9), 2489–2490 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Rørdam, M., Sierakowski, A.: Purely infinite \({C}^*\)-algebras arising from crossed products. Ergod. Theory Dynam. Syst. 32, 273–293 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ruiz, E., Sims, A., Sørenson, A.: UCT-Kirchberg algebras have nuclear dimension one. Adv. Math. 279, 1–28 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Skandalis, G., Tu, J.-L., Yu, G.: The coarse Baum–Connes conjecture and groupoids. Topology 41, 807–834 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  36. Szabó, G.: The Rokhlin dimension of topological \(\mathbb{Z}^m\)-actions. Proc. Lond. Math. Soc. 110(3), 673–694 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. G. Szabó, Zacharias, J., Wu, J.: Rokhlin dimension for actions of residually finite groups. arXiv:1408.6096v2 (2014)

  38. Tikuisis, A., White, S., Winter, W.: Quasidiagonality of nuclear \({C^*}\)-algebras. arXiv:1509.08318 (2015)

  39. Toms, A., Winter, W.: Minimal dynamics and \({K}\)-theoretic rigidity: Elliott’s conjecture. Geom. Funct. Anal. 23, 467–481 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Vick, J.: Homology Theory: An Introduction to Algebraic Topology. Academic Press, Cambridge (1973)

    MATH  Google Scholar 

  41. Winter, W.: Decomposition rank of subhomogeneous \({C^*}\)-algebras. Proc. Lond. Math. Soc. 89, 427–456 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  42. Winter, W., Zacharias, J.: The nuclear dimension of \({C}^*\)-algebras. Adv. Math. 224(2), 461–498 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wright, N.: Finite asymptotic dimension for CAT(0) cube complexes. Geom. Topol. 1, 527–554 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  44. Yu, G.: The Novikov conjecture for groups with finite asymptotic dimension. Ann. Math. 147(2), 325–355 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This paper has been some time in gestation, and has benefited from conversations with several people. In particular, we would like to thank Arthur Bartels, Siegfried Echterhoff, David Kerr, Ian Putnam, Daniel Ramras, Wilhelm Winter, and Jianchao Wu for useful comments, penetrating questions, and/or patient explanations. E. Guentner, R. Willett would like to thank Texas A&M University and the Shanghai Center for Mathematical Sciences for their hospitality during some of the work on this paper. E. Guentner was partially supported by a grant from the Simons Foundation (#245398). R. Willett was partially supported by NSF Grant DMS-1401126. G. Yu was partially supported by NSF Grant DMS-1362772 and NSFC Grant NSFC11420101001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rufus Willett.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guentner, E., Willett, R. & Yu, G. Dynamic asymptotic dimension: relation to dynamics, topology, coarse geometry, and \(C^*\)-algebras. Math. Ann. 367, 785–829 (2017). https://doi.org/10.1007/s00208-016-1395-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-016-1395-0

Navigation