Skip to main content
Log in

A compactness result for Fano manifolds and Kähler Ricci flows

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We obtain a compactness result for Fano manifolds and Kähler Ricci flows. Comparing to the more general Riemannian versions in Anderson (Invent Math 102(2):429–445, 1990) and Hamilton (Am J Math 117:545–572, 1995), in this Fano case, the curvature assumption is much weaker and is preserved by the Kähler Ricci flows. One assumption is the \(C^1\) boundedness of the Ricci potential and the other is the smallness of Perelman’s entropy. As one application, we obtain a new local regularity criteria and structure result for Kähler Ricci flows. The proof is based on a Hölder estimate for the gradient of harmonic functions and mixed derivative of Green’s function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, M.T.: Convergence and rigidity of manifolds under Ricci curvature bounds. Invent. Math. 102(2), 429–445 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bakry, D., Concordet, D., Ledoux, M.: Optimal heat kernel bounds under logarithmic Sobolev inequalities. ESAIM Probab. Stat. 1, 391–407 (1995/97)

  3. Cao, H.D.: Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds. Invent. Math. 81, 359–372 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cheeger, J.: Finiteness theorems for Riemannian manifolds. Am. J. Math. 92, 61–74 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cao, H.D., Chen, B.L., Zhu, X.P.: Ricci flow on compact Kähler manifold of positive bisectional curvatute. Math. DG/0302087. C.R.A.S. 337(12), 781–784 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Citti, G., Garofalo, N., Lanconelli, E.: Harnack’s inequality for sum of squares of vector fields plus a potential. Am. J. Math. 115(3), 699–734 (1993)

    Article  MathSciNet  Google Scholar 

  7. Chen, X., Li, H., Wang, B.: Kähler–Ricci flow with small initial energy. Geom. Funct. Anal. 18(5), 1525–1563 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chow, B., Chu, S.C., Glickenstein, D., Guenther, C., Isenberg, J., Ivey, T., Knopf, D., Lu, P., Luo, F., Ni, L.: The Ricci flow: techniques and applications. Part II. Analytic aspects. Mathematical Surveys and Monographs, vol. 144. American Mathematical Society, Providence (2008)

  9. Chen, X., Tian, G.: Ricci flows on Kähler Einstein surfaces. Invent. Math. 147, 487–544 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, X., Tian, G.: Ricci flows on Kähler Einstein manifolds. Duke Math. J. 131(1), 17–73 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, X., Wang, B.: Space of Ricci flows (I). Commun. Pure Appl. Math. 65(10), 1399–1457 (2012). arXiv:0902.1545

    Article  MATH  Google Scholar 

  12. Chen, X., Wang, B.: On the conditions to extend Ricci flow(III). Int. Math. Res. Not. IMRN 10, 2349–2367 (2013). arXiv:1107.5110

  13. Gromov, M.: Structures métriques pour les variétés riemanniennes. (French) [Metric structures for Riemann manifolds]. In: Lafontaine, J., Pansu, P. (eds.) Textes Mathematiques [Mathematical Texts], vol. 1. CEDIC, Paris (1981)

    Google Scholar 

  14. Hamilton, R.: A compactness property for solution of the Ricci flow. Am. J. Math. 117, 545–572 (1995)

    Article  MATH  Google Scholar 

  15. Hein, H.J., Naber, A.: New logarithmic Sobolev inequalities and an \(\epsilon \)-regularity theorem for the Ricci flow. arXiv:1205.0380

  16. Keith, S., Zhong, X.: The Poincaré inequality is an open ended condition. Ann. Math. (2) 167(2), 575–599 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lieberman, G.M.: Second Order Parabolic Differential Equations. World Scientific Publishing Co., Inc, River Edge (1996). xii+439 pp.

    Book  MATH  Google Scholar 

  18. Li, P., Yau, S.T.: On the Parabolic Kernel of the Schödinger operator. Acta math. 156, 153–201 (1986)

    Article  MathSciNet  Google Scholar 

  19. Munteanu, O., Székelyhidi, G.: On convergence of the Kähler–Ricci flow. Commun. Anal. Geom. 19(5), 887–903 (2011)

    Article  MATH  Google Scholar 

  20. Nicolaescu, L.I.: Lectures on the Geometry of Manifolds, 2nd edn. World Scientific Publishing Co., Pte. Ltd., Hackensack (2007)

    Book  MATH  Google Scholar 

  21. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. arXiv:math.DG/0211159

  22. Phong, D.H., Sturm, J.: On stability and the convergence of the Kähler–Ricci flow. J. Differ. Geom. 72(1), 149–168 (2006)

    MathSciNet  MATH  Google Scholar 

  23. Phong, D.H., Song, J., Sturm, J., Weinkove, B.: The Kähler–Ricci flow with positive bisectional curvature. Invent. Math. 173(3), 651–665 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Phong, D.H., Song, J., Sturm, J., Weinkove, B.: The Kähler–Ricci flow and the \(\overline{\partial }\) operator on vector fields. J. Differ. Geom. 81(3), 631–647 (2009)

  25. Sesum, N.: Convergence of a Kähler–Ricci flow. Math. Res. Lett. 12(5–6), 623–632 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Simader, C.G.: An elementary proof of Harnack’s inequality for Schrödinger operators and related topics. Math. Z. 203(1), 129–152 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  27. Székelyhidi, G.: The Kähler–Ricci flow and K-polystability (English summary). Am. J. Math. 132(4), 1077–1090 (2010)

    Article  MATH  Google Scholar 

  28. Sesum, N., Tian, G.: Bounding scalar curvature and diameter along the Kähler Ricci flow (after Perelman). J. Inst. Math. Jussieu 7(3), 575–587 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Song, J., Tian, G.: The Kähler–Ricci flow on surfaces of positive Kodaira dimension. Invent. Math. 170(3), 609–653 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sun, S., Wang, Y.: On the Kähler-Ricci flow near a Kähler–Einstein metric. arXiv:1004.2018

  31. Tosatti, V.: Kähler–Ricci flow on stable Fano manifolds. J. Reine Angew. Math. 640, 67–84 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tian, G., Wang, B.: On the structure of almost Einstein manifolds. arXiv:1202.2912

  33. Tian, G., Zhang, Q.S.: Isoperimetric inequality under Kähler Ricci flow. Am. J. Math. 136(5), 1155–1173 (2014)

  34. Tian, G., Zhang, Z.L.: Regularity of Kähler Ricci flow on Fano manifolds (2013)

  35. Tian, G., Zhang, Z.: Degeneration of Kähler–Ricci solitons. Int. Math. Res. Not. IMRN 5, 957–985 (2012)

  36. Tian, G., Zhu, X.: Convergence of Kähler–Ricci flow. J. Am. Math. Soc. 20(3), 675–699 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Tian, G., Zhu, X.: Convergence of the Kähler–Ricci flow on Fano manifolds. J. Reine Angew. Math. 678, 223–245 (2013)

    MathSciNet  MATH  Google Scholar 

  38. Tian, G., Zhang, S., Zhang, Z., Zhu, X.: Perelman’s entropy and Kähler–Ricci flow on a Fano manifold. Trans. Am. Math. Soc. 365(12), 6669–6695 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Ye, R.: The logarithmic Sobolev inequality along the Ricci flow. arXiv:0707.2424

  40. Zhang, Q.S.: A uniform Sobolev inequality under Ricci flow, IMRN (2007). ibidi Erratum, Addendum

  41. Zhang, Q.S.: Sobolev Inequalities, Heat Kernels Under Ricci Flow and the Poincaré Conjecture. CRC Press, Boca Raton (2011)

    MATH  Google Scholar 

  42. Zhang, Q.S.: Bounds on volume growth of geodesic balls under Ricci flow. Math. Res. Lett. 19(1), 245–253 (2012). arXiv:1107.4262

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhang, Z.: Kähler Ricci flow on Fano manifolds with vanished Futaki invariants. arXiv:1010.5959

  44. Zhang, Z.: Kähler Ricci flow with vanished Futaki invariant. arXiv:1011.4799

  45. Zhu, X.: Stability of Kähler–Ricci flow on a Fano manifold. Math. Ann. 356(4), 1425–1454 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

Q. S. Z. would like to thank Professors X. X. Chen, G. F. Wei and Zhenlei Zhang for helpful conversations. We are also grateful to the referee for helpful comments.

   After the paper have been accepted for publication, Professor Xiaohua Zhu kindly informed us that the Proof of Theorems 1.2 and 1.3 can be shortened by proving \(C^{1, \alpha }\) continuity of harmonic functions and the Ricci potential within a harmonic coordinate by standard Schauder method. Thus the two theorems can also be strengthened to allow any \(\alpha \in (0, 1)\) instead of some \(\alpha \in (0, 1)\). However the integral estimate in Sect. 2 may be of independent interest.

   G. T. acknowledges the support of a NSF grant. Part of the paper was written when Q. S. Z. was a visiting professor of Nanjing University under a Siyuan Foundation grant. He is grateful to both the Siyuan Foundation and the Simons Foundation for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi S. Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, G., Zhang, Q.S. A compactness result for Fano manifolds and Kähler Ricci flows. Math. Ann. 362, 965–999 (2015). https://doi.org/10.1007/s00208-014-1147-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-014-1147-y

Navigation