Skip to main content
Log in

Stability of Large-Amplitude Viscous Shock Profiles of Hyperbolic-Parabolic Systems

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract.

We establish nonlinear L 1H 3L p orbital stability, 2≦p≤∞, with sharp rates of decay, of large-amplitude Lax-type shock profiles for a class of symmetric hyperbolic-parabolic systems including compressible gas dynamics and magnetohydrodynamics (MHD) under the necessary conditions of strong spectral stability, i.e., a stable point spectrum of the linearized operator about the wave, transversality of the profile, and hyperbolic stability of the associated ideal shock. This yields in particular, together with the spectral stability results of [50], the nonlinear stability of arbitrarily large-amplitude shock profiles of isentropic Navier–Stokes equations for a gamma-law gas as γ→1: the first complete large-amplitude stability result for a shock profile of a system with real (i.e., partial) viscosity. A corresponding small-amplitude result was established in [53, 54] for general systems of Kawashima class by a combination of ‘‘Kawashima-type’’ energy estimates and pointwise Green function bounds, where the small-amplitude assumption was used only to close the energy estimates. Here, under the mild additional assumption that hyperbolic characteristic speeds (relative to the shock) are not only nonzero but of a common sign, we close the estimates instead by use of a Goodman-type weighted norm [25, 26] designed to control estimates in the crucial hyperbolic modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Azevedo, A., Marchesin, D., Plohr, B., Zumbrun, K.: Bifurcation of nonclassical viscous shock profiles from the constant state. Comm. Math. Phys. 202, 267–290 (1999)

    MathSciNet  MATH  Google Scholar 

  2. Barmin, A.A., Egorushkin, S.A.: Stability of shock waves. Adv. Mech. 15, 3–37 (1992)

    MathSciNet  Google Scholar 

  3. Benzoni–Gavage, S., Serre, D., Zumbrun, K.: Alternate Evans functions and viscous shock waves. SIAM J. Math. Anal. 32, 929–962 (2001)

    MathSciNet  MATH  Google Scholar 

  4. Blokhin, A.M.: Strong discontinuities in magnetohydrodynamics. Translated by A.V. Zakharov. Nova Science Publishers, Inc., Commack, NY, 1994

  5. Blokhin, A., Trakhinin, Y.: Stability of strong discontinuities in fluids and MHD. In: Handbook of mathematical fluid dynamics, Vol. I, North-Holland, Amsterdam, 2002, pp. 545–652

  6. Blokhin, A.M., Trakhinin, Y.: Stability of fast parallel MHD shock waves in polytropic gas. Eur. J. Mech. B Fluids 18, 197–211 (1999)

    MathSciNet  MATH  Google Scholar 

  7. Blokhin, A.M., Trakhinin, Y.: Stability of fast parallel and transversal MHD shock waves in plasma with pressure anisotropy. Acta Mech. 135, 57–71 (1999)

    MathSciNet  MATH  Google Scholar 

  8. Blokhin, A.M., Trakhinin, Y.: Hyperbolic initial-boundary value problems on the stability of strong discontinuities in continuum mechanics. Hyperbolic problems: theory, numerics, applications, Vol. I (Zürich, 1998), Internat. Ser. Numer. Math., 129, Birkhäuser, Basel, 1999, pp. 77–86

  9. Blokhin, A.M., Trakhinin, Y., Merazhov, I.Z.: On the stability of shock waves in a continuum with bulk charge. Prikl. Mekh. Tekhn. Fiz. 39, 29–39 (1998) (Russian) translation in J. Appl. Mech. Tech. Phys. 39, 184–193 (1998)

    MathSciNet  MATH  Google Scholar 

  10. Blokhin, A.M., Trakhinin, Y., Merazhov, I.Z.: Investigation on stability of electrohydrodynamic shock waves. Matematiche (Catania) 52(1997), 87–114 (1998)

    MathSciNet  MATH  Google Scholar 

  11. Boillat, G.: On symmetrization of partial differential systems. Appl. Anal. 57, 17–21 (1995)

    MathSciNet  MATH  Google Scholar 

  12. Brin, L.Q.: Numerical testing of the stability of viscous shock waves. Ph.D. dissertation, Indiana University, May 1998

  13. Brin, L.Q.: Numerical testing of the stability of viscous shock waves. Math. Comp. 70, 1071–1088 (2001)

    MathSciNet  MATH  Google Scholar 

  14. Brin, L., Zumbrun, K.: Analytically varying eigenvectors and the stability of viscous shock waves. Mat. Contemp. 22, 19–32 (2002)

    MathSciNet  Google Scholar 

  15. Conley, C., Smoller, J.: On the structure of magnetohydrodynamic shock waves. Comm. Pure Appl. Math. 27, 367–375 (1974)

    MATH  Google Scholar 

  16. Erpenbeck, J.J.: Stability of step shocks. Phys. Fluids 5, 1181–1187 (1962)

    MATH  Google Scholar 

  17. Freistühler, H.: Profiles for small Laxian shock waves in Kawashima type systems of conservation laws. Preprint, 2000

  18. Freistühler, H., Szmolyan, P.: Spectral stability of small shock waves. Arch. Rational Mech. Anal. 164, 287–309 (2002)

    MathSciNet  Google Scholar 

  19. Freistühler, H., Zumbrun, K.: Examples of unstable viscous shock waves. Unpublished note, Institut für Mathematik, RWTH Aachen, February 1998

  20. Friedrichs, K.O.: Symmetric hyperbolic linear differential equations. Comm. Pure and Appl. Math. 7, 345–392 (1954)

    MathSciNet  MATH  Google Scholar 

  21. Friedrichs, K.O., Lax, P.: Systems of conservation equations with a convex extension. Proc. nat. Acad. Sci. USA 68, 1686–1688 (1971)

    MATH  Google Scholar 

  22. Gardner, R., Zumbrun, K.: The Gap Lemma and geometric criteria for instability of viscous shock profiles. Comm. Pure Appl. Math. 51, 797–855 (1998)

    MathSciNet  Google Scholar 

  23. Gilbarg, D.: The existence and limit behavior of the one-dimensional shock layer. Amer J. Math. 73, 256–274 (1951)

    MathSciNet  MATH  Google Scholar 

  24. Godunov, S.K.: An interesting class of quasilinear systems. Sov. Math. 2 947–948 (1961)

  25. Goodman, J.: Nonlinear asymptotic stability of viscous shock profiles for conservation laws. Arch. Rational Mech. Anal. 95, 325–344 (1986)

    MathSciNet  MATH  Google Scholar 

  26. Goodman, J.: Remarks on the stability of viscous shock waves. In: Viscous profiles and numerical methods for shock waves (Raleigh, NC, 1990), SIAM, Philadelphia, PA, 1991, pp. 66–72

  27. Hoff, D., Zumbrun, K.: Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow. Indiana Univ. Math. J. 44, 603–676 (1995)

    MathSciNet  MATH  Google Scholar 

  28. Hoff, D., Zumbrun, K.: Pointwise Green’s function bounds for multi-dimensional scalar viscous shock fronts. J. Diff. Eqs. 183, 368–408 (2002)

    MATH  Google Scholar 

  29. Hoff, D., Zumbrun, K.: Asymptotic behavior of multi-dimensional scalar viscous shock fronts. Indiana Univ. Math. J. 49, 427–474 (2000)

    MathSciNet  MATH  Google Scholar 

  30. Howard, P., Zumbrun, K.: A tracking mechanism for one-dimensional viscous shock waves. Preprint, 1999

  31. Howard, P., Zumbrun, K.: Pointwise estimates for dispersive-diffusive shock waves. Arch. Rational. Mech. Anal. 155, 85–169 (2000)

    MathSciNet  MATH  Google Scholar 

  32. Humpherys, J., Zumbrun, K.: Spectral stability of small amplitude shock profiles for dissipative symmetric hyperbolic–parabolic systems. Z. Angew. Math. Phys. 53, 20–34 (2002)

    MathSciNet  MATH  Google Scholar 

  33. Jenssen, K., Lyng, G.: Evaluation of the Lopatinski determinant for multi-dimensional Euler equations. Appendix to [72] (see below)

  34. Kanel, Ya.: On a model system of equations of of one-dimensional gas motion. Diff. Eqs. 4, 374–380 (1968)

    MATH  Google Scholar 

  35. Kapitula, T.: Stability of weak shocks in λ–ω systems. Indiana Univ. Math. J. 40, 1193–12 (1991)

    MathSciNet  MATH  Google Scholar 

  36. Kapitula, T.: On the stability of travelling waves in weighted L spaces. J. Diff. Eqs. 112, 179–215 (1994)

    MATH  Google Scholar 

  37. Kawashima, S.: Systems of a hyperbolic–parabolic composite type, with applications to the equations of magnetohydrodynamics. Thesis, Kyoto University, 1983

  38. Lax, P.D.: Hyperbolic systems of conservation laws and the mathematical theory of shock waves. Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No. 11. Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1973. v+48 pp.

  39. Liu, T.-P.: The entropy condition and the admissibility of shocks. J. Math. Anal. Appl. 53, 78–88 (1976)

    MATH  Google Scholar 

  40. Liu, T.-P., Zumbrun, K: Nonlinear stability of an undercompressive shock for complex Burgers equation. Comm. Math. Phys. 168, 163–186 (1995)

    MathSciNet  Google Scholar 

  41. Liu, T.-P., Zumbrun, K: On nonlinear stability of general undercompressive viscous shock waves. Comm. Math. Phys. 174, 319–345 (1995)

    MathSciNet  MATH  Google Scholar 

  42. Liu, T.-P., Zeng, Y.: Large time behavior of solutions for general quasilinear hyperbolic–parabolic systems of conservation laws. AMS memoirs 599, 1997

  43. Lyng, G.: One-dimensional stability of combustion waves. Thesis, Indiana University, 2003

  44. Lyng, G., Zumbrun, K.: A stability index for detonation waves in Majda’s model for reacting flow. Preprint (2003)

  45. Lyng, G., Zumbrun, K.: On the one-dimensional stability of viscous strong detonation waves. Preprint, 2003

  46. Majda, A.: The stability of multi-dimensional shock fronts – a new problem for linear hyperbolic equations. Mem. Am. Math. Soc. 275, (1983)

  47. Majda, A.: The existence of multi-dimensional shock fronts. Mem. Am. Math. Soc. 281, (1983)

  48. Majda, A.: Compressible fluid flow and systems of conservation laws in several space variables. Springer-Verlag, New York, 1984

  49. Majda, A., Pego, R.: Stable viscosity matrices for systems of conservation laws. J. Diff. Eqs. 56, 229–262 (1985)

    MATH  Google Scholar 

  50. Matsumura, A., Nishihara, K.: On the stability of travelling wave solutions of a one-dimensional model system for compressible viscous gas. Japan J. Appl. Math. 2, 17–25 (1985)

    MathSciNet  MATH  Google Scholar 

  51. Menikoff, R., Plohr, B.: The Riemann problem for fluid flow of real materials. Rev. Modern Phys. 61, 75–130 (1989)

    MathSciNet  Google Scholar 

  52. Mascia, C., Zumbrun, K.: Pointwise Green’s function bounds and stability of relaxation shocks. Indiana Univ. Math. J. 51, 773–904 (2002)

    MathSciNet  MATH  Google Scholar 

  53. Mascia, C., Zumbrun, K.: Stability of shock profiles of dissipative symmetric hyperbolic–parabolic systems. Preprint, 2001

  54. Mascia, C., Zumbrun, K.: Pointwise Green’s function bounds for shock profiles with degenerate viscosity. Arch. Rational Mech. Anal. 169, 177–263 (2003)

    Article  MATH  Google Scholar 

  55. Pego, R.L.: Stable viscosities and shock profiles for systems of conservation laws. Trans. Am. Math. Soc. 282, 749–763 (1984)

    MathSciNet  MATH  Google Scholar 

  56. Pego, R.L.: Phase transitions in one-dimensional nonlinear viscoelasticity: admissibility and stability. Arch. Rational Mech. Anal. 97, 353–394 (1987)

    MathSciNet  MATH  Google Scholar 

  57. Pego, R.L.: Nonexistence of a shock layer in gas dynamics with a nonconvex equation of state. Arch. Rational Mech. Anal. 94, 165–178 (1986)

    MathSciNet  MATH  Google Scholar 

  58. Plaza, R., Zumbrun, K.: An Evans function approach to spectral stability of small-amplitude viscous shock profiles. Preprint, 2002

  59. Rousset, F.: Stability of small-amplitude boundary layers for mixed hyperbolic–parabolic systems. Trans. Amer. Math. Soc. 355, 2991–3008 (2003)

    MATH  Google Scholar 

  60. Sattinger, D.: On the stability of waves of nonlinear parabolic systems. Adv. Math. 22, 312–355 (1976)

    MATH  Google Scholar 

  61. Serre, D.: Systèmes de lois de conservation I–II. Fondations, Diderot Editeur, Paris, 1996

  62. Serre, D.: La transition vers l’instabilité pour les ondes de chocs multi-dimensionnelles. Trans. Am. Math. Soc. 353, 5071–5093 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  63. Serre, D., Zumbrun, K.: Boundary layer stability in real vanishing viscosity limit. Comm. Math. Phys. 221, 267–292 (2001)

    MathSciNet  MATH  Google Scholar 

  64. Shizuta, Y., Kawashima, S.: Systems of equations of hyperbolic–parabolic type with applications to the discrete Boltzmann equation. Hokkaido Math. J. 14, 435–457 (1984)

    Google Scholar 

  65. Smith, R.: The Riemann problem in gas dynamics. Trans. Am. Math. Soc. 249, 1–50 (1979)

    MathSciNet  Google Scholar 

  66. Weyl, H.: Shock Waves in Arbitrary fluids. Comm. Pure and Appl. Math. 2, 103–122 (1949)

    MathSciNet  MATH  Google Scholar 

  67. Zeng, Y.: L 1 asymptotic behavior of compressible, isentropic, viscous 1-d flow. Comm. Pure Appl. Math. 47, 1053–1092 (1994)

    MathSciNet  MATH  Google Scholar 

  68. Zeng, Y.: Gas dynamics in thermal nonequilibrium and general hyperbolic systems with relaxation. Arch. Rational. Mech. Anal. 150, 225–279 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  69. Zumbrun, K., Howard, P.: Pointwise semigroup methods and stability of viscous shock waves. Indiana Math. J. 47, 741–871 (1998)

    MathSciNet  MATH  Google Scholar 

  70. Zumbrun, K.: Stability of viscous shock waves. Lecture Notes, Indiana University, 1998

  71. Zumbrun, K.: Refined Wave–tracking and Nonlinear Stability of Viscous Lax Shocks. Methods Appl. Anal. 7, 747–768 (2000)

    MathSciNet  MATH  Google Scholar 

  72. Zumbrun, K.: Multidimensional stability of planar viscous shock waves. Advances in the theory of shock waves. Progr. Nonlinear Differential Equations Appl., 47, Birkhäuser Boston, Boston, MA, 2001, pp. 307–516

  73. Zumbrun, K.: Stability of large-amplitude shock waves for compressible Navier–Stokes equations. Preprint, 2003

  74. Zumbrun, K., Serre, D.: Viscous and inviscid stability of multidimensional planar shock fronts. Indiana Univ. Math. J. 48, 937–992 (1999)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corrado Mascia.

Additional information

A. Bressan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mascia, C., Zumbrun, K. Stability of Large-Amplitude Viscous Shock Profiles of Hyperbolic-Parabolic Systems. Arch. Rational Mech. Anal. 172, 93–131 (2004). https://doi.org/10.1007/s00205-003-0293-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-003-0293-2

Keywords

Navigation