Skip to main content
Log in

Sex-specific differences in genotoxic and epigenetic effects of 1,3-butadiene among mouse tissues

  • Genotoxicity and Carcinogenicity
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Exposure to environmental chemicals has been shown to have an impact on the epigenome. One example is a known human carcinogen 1,3-butadiene which acts primarily by a genotoxic mechanism, but also disrupts the chromatin structure by altering patterns of cytosine DNA methylation and histone modifications. Sex-specific differences in 1,3-butadiene-induced genotoxicity and carcinogenicity are well established; however, it remains unknown whether 1,3-butadiene-associated epigenetic alterations are also sex dependent. Therefore, we tested the hypothesis that inhalational exposure to 1,3-butadiene will result in sex-specific epigenetic alterations. DNA damage and epigenetic effects of 1,3-butadiene were evaluated in liver, lung, and kidney tissues of male and female mice of two inbred strains (C57BL/6J and CAST/EiJ). Mice were exposed to 0 or 425 ppm of 1,3-butadiene by inhalation (6 h/day, 5 days/week) for 2 weeks. Strain- and tissue-specific differences in 1,3-butadiene-induced DNA adducts and crosslinks were detected in the liver, lung and kidney; however, significant sex-specific differences in DNA damage were observed in the lung of C57BL/6J mice only. In addition, we assessed expression of the DNA repair genes and observed a marked upregulation of Mgmt in the kidney in female C57BL/6J mice. Sex-specific epigenetic effects of 1,3-butadiene exposure were evident in alterations of cytosine DNA methylation and histone modifications in the liver and lung in both strains. Specifically, we observed a loss of cytosine DNA methylation in the liver and lung of male and female 1,3-butadiene-exposed C57BL/6J mice, whereas hypermethylation was found in the liver and lung in 1,3-butadiene-exposed female CAST/EiJ mice. Our findings suggest that strain- and sex-specific effects of 1,3-butadiene on the epigenome may contribute to the known differences in cancer susceptibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arif JM, Dresler C, Clapper ML et al (2006) Lung DNA adducts detected in human smokers are unrelated to typical polyaromatic carcinogens. Chem Res Toxicol 19(2):295–299

    Article  CAS  PubMed  Google Scholar 

  • Baccarelli A, Bollati V (2009) Epigenetics and environmental chemicals. Curr Opin Pediatr 21(2):243–251

    Article  PubMed  PubMed Central  Google Scholar 

  • Bae JM, Shin SH, Kwon HJ et al (2012) ALU and LINE-1 hypomethylations in multistep gastric carcinogenesis and their prognostic implications. Int J Cancer 131(6):1323–1331

    Article  CAS  PubMed  Google Scholar 

  • Baylin SB, Herman JG (2000) DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet 16(4):168–174

    Article  CAS  PubMed  Google Scholar 

  • Chappell G, Kobets T, O’Brien B et al (2014) Epigenetic events determine tissue-specific toxicity of inhalational exposure to the genotoxic chemical 1,3-butadiene in male C57BL/6J mice. Toxicol Sci 142(2):375–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chappell G, Pogribny IP, Guyton KZ, Rusyn I (2016) Epigenetic alterations induced by genotoxic occupational and environmental human chemical carcinogens: A systematic literature review. Mutat Res Rev Mutat Res 768:27–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chappell GA, Israel JW, Simon JM et al (2017) Variation in DNA-damage responses to an inhalational carcinogen (1,3-butadiene) in relation to strain-specific differences in chromatin accessibility and gene transcription profiles in C57BL/6J and CAST/EiJ mice. Environ Health Perspect 125(10):107006

    Article  PubMed  PubMed Central  Google Scholar 

  • Clayton JA, Collins FS (2014) Policy: NIH to balance sex in cell and animal studies. Nature 509(7500):282–283

    Article  PubMed  PubMed Central  Google Scholar 

  • Cogliano VJ, Baan R, Straif K et al (2011) Preventable exposures associated with human cancers. J Natl Cancer Inst 103(24):1827–1839

    Article  PubMed  PubMed Central  Google Scholar 

  • Dumenco LL, Allay E, Norton K, Gerson SL (1993) The prevention of thymic lymphomas in transgenic mice by human O6-alkylguanine-DNA alkyltransferase. Science 259(5092):219–222

    Article  CAS  PubMed  Google Scholar 

  • Faulk C, Barks A, Liu K, Goodrich JM, Dolinoy DC (2013) Early-life lead exposure results in dose- and sex-specific effects on weight and epigenetic gene regulation in weanling mice. Epigenomics 5(5):487–500

    Article  CAS  PubMed  Google Scholar 

  • Goggin M, Swenberg JA, Walker VE, Tretyakova N (2009) Molecular dosimetry of 1,2,3,4-diepoxybutane-induced DNA-DNA cross-links in B6C3F1 mice and F344 rats exposed to 1,3-butadiene by inhalation. Cancer Res 69(6):2479–2486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  • Hartman JH, Miller GP, Caro AA et al (2017) 1,3-Butadiene-induced mitochondrial dysfunction is correlated with mitochondrial CYP2E1 activity in Collaborative Cross mice. Toxicology 378:114–124

    Article  CAS  PubMed  Google Scholar 

  • Hossain K, Suzuki T, Hasibuzzaman MM et al (2017) Chronic exposure to arsenic, LINE-1 hypomethylation, and blood pressure: a cross-sectional study in Bangladesh. Environ Health 16(1):20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • IARC (2009) 1,3-Butadiene, ethylene oxide and vinyl halides (vinyl fluoride and vinyl bromide). WHO, Lyon

    Google Scholar 

  • Israel JW, Chappell GA, Simon JM et al (2018) Tissue- and strain-specific effects of a genotoxic carcinogen 1,3-butadiene on chromatin and transcription. Mamm Genome 29(1–2):153–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khobta A, Epe B (2012) Interactions between DNA damage, repair, and transcription. Mutation Res 736(1–2):5–14

    Article  CAS  PubMed  Google Scholar 

  • Kippler M, Engstrom K, Mlakar SJ et al (2013) Sex-specific effects of early life cadmium exposure on DNA methylation and implications for birth weight. Epigenetics 8(5):494–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koturbash I, Scherhag A, Sorrentino J et al (2011) Epigenetic mechanisms of mouse interstrain variability in genotoxicity of the environmental toxicant 1,3-butadiene. Toxicol Sci 122(2):448–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovalchuk O, Burke P, Besplug J, Slovack M, Filkowski J, Pogribny I (2004) Methylation changes in muscle and liver tissues of male and female mice exposed to acute and chronic low-dose X-ray-irradiation. Mutat Res 548(1–2):75–84

    Article  CAS  PubMed  Google Scholar 

  • Kundakovic M, Gudsnuk K, Franks B et al (2013) Sex-specific epigenetic disruption and behavioral changes following low-dose in utero bisphenol A exposure. Proc Natl Acad Sci USA 110(24):9956–9961

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu EY, Russ J, Wu K et al (2014) C9orf72 hypermethylation protects against repeat expansion-associated pathology in ALS/FTD. Acta Neuropathol 128(4):525–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martens JH, O’Sullivan RJ, Braunschweig U et al (2005) The profile of repeat-associated histone lysine methylation states in the mouse epigenome. EMBO J 24(4):800–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melnick RL, Huff J, Matanoski GM (1992) Carcinogenicity of 1,3-butadiene. Lancet 340:724–725

    Article  CAS  PubMed  Google Scholar 

  • Meng Q, Walker DM, McDonald JD et al (2007) Age-, gender-, and species-dependent mutagenicity in T cells of mice and rats exposed by inhalation to 1,3-butadiene. Chem Biol Interact 166(1–3):121–131

    Article  CAS  PubMed  Google Scholar 

  • National Toxicology Program (1993) NTP toxicology and carcinogenesis studies of 1,3-Butadiene (CAS No. 106-99-0) in B6C3F1 Mice (inhalation studies). Natl Toxicol Program Tech Rep Ser 434:1–389

    Google Scholar 

  • Owen PE, Glaister JR, Gaunt IF, Pullinger DH (1987) Inhalation toxicity studies with 1,3-butadiene. 3. Two year toxicity/carcinogenicity study in rats. Am Ind Hyg Assoc J 48(5):407–413

    Article  CAS  PubMed  Google Scholar 

  • Patchsung M, Settayanon S, Pongpanich M, Mutirangura D, Jintarith P, Mutirangura A (2018) Alu siRNA to increase Alu element methylation and prevent DNA damage. Epigenomics 10(2):175–185

    Article  CAS  PubMed  Google Scholar 

  • Pogribny IP, Beland FA (2009) DNA hypomethylation in the origin and pathogenesis of human diseases. Cell Mol Life Sci 66(14):2249–2261

    Article  CAS  PubMed  Google Scholar 

  • Pogribny IP, Rusyn I (2013) Environmental toxicants, epigenetics, and cancer. Adv Exp Med Biol 754:215–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pogribny I, Raiche J, Slovack M, Kovalchuk O (2004) Dose-dependence, sex- and tissue-specificity, and persistence of radiation-induced genomic DNA methylation changes. Biochem Bioph Res Co 320(4):1253–1261

    Article  CAS  Google Scholar 

  • Pogribny IP, Ross SA, Tryndyak VP, Pogribna M, Poirier LA, Karpinets TV (2006) Histone H3 lysine 9 and H4 lysine 20 trimethylation and the expression of Suv4-20h2 and Suv-39h1 histone methyltransferases in hepatocarcinogenesis induced by methyl deficiency in rats. Carcinogenesis 27(6):1180–1186

    Article  CAS  PubMed  Google Scholar 

  • Primavera A, Fustinoni S, Biroccio A et al (2008) Glutathione transferases and glutathionylated hemoglobin in workers exposed to low doses of 1,3-butadiene. Cancer Epidemiol Biomark Prev 17(11):3004–3012

    Article  CAS  Google Scholar 

  • Robertson KD (2005) DNA methylation and human disease. Nat Rev Genet 6(8):597–610

    Article  CAS  PubMed  Google Scholar 

  • Rusyn I, Pogribny IP (2017) Editorial overview of the special issue on genomic toxicology epigenetics. Curr Opin Toxicol 6:i-iii

    PubMed  PubMed Central  Google Scholar 

  • Rusyn I, Asakura S, Pachkowski B et al (2004) Expression of base excision DNA repair genes is a sensitive biomarker for in vivo detection of chemical-induced chronic oxidative stress: identification of the molecular source of radicals responsible for DNA damage by peroxisome proliferators. Cancer Res 64(3):1050–1057

    Article  CAS  PubMed  Google Scholar 

  • Rusyn I, Kleeberger SR, McAllister KA, French JE, Svenson KL (2018) Introduction to mammalian genome special issue: the combined role of genetics and environment relevant to human disease outcomes. Mamm Genome 29(1–2):1–4

    Article  PubMed  PubMed Central  Google Scholar 

  • Sangaraju D, Goggin M, Walker V, Swenberg J, Tretyakova N (2012) NanoHPLC-nanoESI(+)-MS/MS quantitation of bis-N7-guanine DNA-DNA cross-links in tissues of B6C3F1 mice exposed to subppm levels of 1,3-butadiene. Anal Chem 84(3):1732–1739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith MT, Guyton KZ, Gibbons CF et al (2016) Key characteristics of carcinogens as a basis for organizing data on mechanisms of carcinogenesis. Environ Health Perspect 124(6):713–721

    Article  CAS  PubMed  Google Scholar 

  • Swenberg JA, Ham AJ, Koc H et al (2000) DNA adducts: effects of low exposure to ethylene oxide, vinyl chloride and butadiene. Mutat Res 464(1):77–86

    Article  CAS  PubMed  Google Scholar 

  • Swenberg JA, Bordeerat NK, Boysen G et al (2011) 1,3-Butadiene: biomarkers and application to risk assessment. Chem Biol Interact 24(6):809–817

    Google Scholar 

  • Thomson JP, Moggs JG, Wolf CR, Meehan RR (2014) Epigenetic profiles as defined signatures of xenobiotic exposure. Mutat Res Genet Toxicol Environ Mutagen 764–765:3–9

    Article  CAS  PubMed  Google Scholar 

  • Tryndyak V, Kindrat I, Dreval K, Churchwell MI, Beland FA, Pogribny IP (2018) Effect of aflatoxin B1, benzo[a]pyrene, and methapyrilene on transcriptomic and epigenetic alterations in human liver HepaRG cells. Food Chem Toxicol 121:214–223

    Article  CAS  PubMed  Google Scholar 

  • Tubbs JL, Pegg AE, Tainer JA (2007) DNA binding, nucleotide flipping, and the helix-turn-helix motif in base repair by O6-alkylguanine-DNA alkyltransferase and its implications for cancer chemotherapy. DNA Repair 6(8):1100–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vacek PM, Albertini RJ, Sram RJ, Upton P, Swenberg JA (2010) Hemoglobin adducts in 1,3-butadiene exposed Czech workers: female-male comparisons. Chem Biol Interact 188(3):668–676

    Article  CAS  PubMed  Google Scholar 

  • Valinluck V, Tsai HH, Rogstad DK, Burdzy A, Bird A, Sowers LC (2004) Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2). Nucleic Acids Res 32(14):4100–4108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoder JA, Walsh CP, Bestor TH (1997) Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 13(8):335–340

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Hou H, Chen H, Liu Y, Wang A, Hu Q (2015) A column-switching LC-MS/MS method for simultaneous quantification of biomarkers for 1,3-butadiene exposure and oxidative damage in human urine. J Chromatogr B Analyt Technol Biomed Life Sci 1002:123–129

    Article  CAS  PubMed  Google Scholar 

  • Zuo J, Brewer DS, Arlt VM, Cooper CS, Phillips DH (2014) Benzo pyrene-induced DNA adducts and gene expression profiles in target and non-target organs for carcinogenesis in mice. BMC Genom 15:880

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by grants from National Institutes of Health (R01 ES023195, R01 CA095039 and P30 ES025128). The views expressed in this article are those of the authors and do not necessarily reflect the views of NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Rusyn.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 11 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lewis, L., Chappell, G.A., Kobets, T. et al. Sex-specific differences in genotoxic and epigenetic effects of 1,3-butadiene among mouse tissues. Arch Toxicol 93, 791–800 (2019). https://doi.org/10.1007/s00204-018-2374-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-018-2374-x

Keywords

Navigation