Skip to main content
Log in

The generation of metabolic energy by solute transport

  • Mini-review
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Secondary metabolic-energy-generating systems generate a proton motive force (pmf) or a sodium ion motive force (smf) by a process that involves the action of secondary transporters. The (electro)chemical gradient of the solute(s) is converted into the electrochemical gradient of protons or sodium ions. The most straightforward systems are the excretion systems by which a metabolic end product is excreted out of the cell in symport with protons or sodium ions (energy recycling). Similarly, solutes that were accumulated and stored in the cell under conditions of abundant energy supply may be excreted again in symport with protons when conditions become worse (energy storage). In fermentative bacteria, a proton motive force is generated by fermentation of weak acids, such as malate and citrate. The two components of the pmf, the membrane potential and the pH gradient, are generated in separate steps. The weak acid is taken up by a secondary transporter either in exchange with a fermentation product (precursor/product exchange) or by a uniporter mechanism. In both cases, net negative charge is translocated into the cell, thereby generating a membrane potential. Decarboxylation reactions in the metabolic breakdown of the weak acid consume cytoplasmic protons, thereby generating a pH gradient across the membrane. In this review, several examples of these different types of secondary metabolic energy generation will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

pmf :

Proton motive force

smf :

Sodium ion motive force

References

  • Ambudkar SV, Rosen BP (1990) Ion-exchange in prokaryotes In: Krulwich T (ed) The bacteria, vol 12. Academic Press, New York pp 247–271

    Google Scholar 

  • Anantharam V, Allison MJ, Maloney PC (1989) Oxalate: formate exchange. The basis for energy coupling inOxalobacter. J Biol Chem 264:7244–7250

    PubMed  CAS  Google Scholar 

  • Anasany V, Dequin S, Blondin B, Barre P (1993) Cloning, sequence and expression of the gene encoding the malolactic enzyme fromLactococcus lactis. FEBS Lett 332:74–80

    Article  Google Scholar 

  • Boenigk R, Dürre P, Gottschalk G (1989) Carrier-mediated acetate transport inAcetobacter woodii. Arch Microbiol 152:589–593

    Article  CAS  Google Scholar 

  • Broër S, Krämer R (1990) Lysine uptake and exchange inCorynebacterium glutamicum. J Bacteriol 172:7241–7248

    PubMed  Google Scholar 

  • Driessen AJM, Smid EJ, Konings WN (1988) Transport of diamines byEnterococcus faecalis is mediated by an agmatine-putrescine antiporter. J Bacteriol 170:4522–4527

    PubMed  CAS  Google Scholar 

  • Engel P, Krämer R, Unden G (1994) Transport of C4 decarboxylates by anaerobically grownEscherichia coli. Energetics and mechanism of exchange, uptake and efflux. Eur J Biochem 112:605–614

    Article  Google Scholar 

  • Gale EF (1946) The bacterial amino acid decarboxylases. Adv Enzymol 6:1–32

    CAS  Google Scholar 

  • Higuchi T, Hayashi H, Abe K (1993) ATP-generation coupled with amino acid decarboxylation by lactobacilli. FEMS Microbiol Lett 12:C39

    Google Scholar 

  • Hugenholtz J, Perdon L, Abee T (1993) Growth and energy generation byLactococcus lactis subsp.lactis biovardiacetylactis during citrate metabolism. Appl Environ Microbiol 59:4216–4222

    PubMed  CAS  Google Scholar 

  • Ingvorsen K, Zehnder AJB, Jørgenson BB (1984) Kinetics of sulfate uptake and acetate uptake byDesulfobacter postgatei. Appl Environ Microbiol 47:404–408

    Google Scholar 

  • Janssen PH, Harfoot CG (1990) Isolation ofCitrobacter sp. able to grow on malonate under strictly anaerobic conditions. J Gen Microbiol 136:1037–1042

    PubMed  CAS  Google Scholar 

  • Kashiwagi K, Miyamoto S, Suzuki F, Kobayashi H, Igarashi K (1992) Excretion of putrescine by the putrescine-ornithine antiporter encoded by thepotE gene ofEscherichia coli. Proc Natl Acad Sci USA 89:4529–4533

    Article  PubMed  CAS  Google Scholar 

  • Kelly DP (1988) Oxidation of sulphur compounds. In: Cole JA, Ferguson SJ (eds) The nitrogen and sulphur cycle. Cambridge University Press, Cambridge, pp 64–98

    Google Scholar 

  • Konings WN, Booth IR (1981) Do the stoichiometries of ion-linked transport systems vary? Trends Biochem Sci 6:257–262

    Article  Google Scholar 

  • Konings WN, Poolman B, Van Veen HW (1994) Solute transport and energy transduction in bacteria. Antonie Van Leeuwenhoek 65:369–380

    Article  PubMed  CAS  Google Scholar 

  • Kunkee R (1991) Some roles of malic acid in the malolactic fermentation in wine making. FEMS Microbiol Rev 88:55–72

    Article  CAS  Google Scholar 

  • Lolkema JS, Speelmans G, Konings WN (1994) Na+-coupled versus H+-coupled energy transduction in bacteria. Biochim Biophys Acta 1187:211–215

    Article  PubMed  CAS  Google Scholar 

  • Maloney PC, Ambudkar SV, Anantharam V, Sonna LA, Varadhachary A (1990) Anion-exchange mechanisms in bacteria. Microbiol Rev 54:1–17

    PubMed  CAS  Google Scholar 

  • McInerney MJ, Beaty PS (1988) Anaerobic community structure from a non-equilibrium thermodynamic perspective. Can J Microbiol 34:487–493

    Article  CAS  Google Scholar 

  • Meng SY, Bennett GN (1992) Nucleotide sequence of theEscherichia coli cad operon: a system for neutralization of low extracellular pH. J Bacteriol 174:2659–2669

    PubMed  CAS  Google Scholar 

  • Michel TA, Macy JM (1990) Generation of a membrane potential by sodium-dependent succinate efflux inSelenomonas ruminantium. J Bacteriol 172:1430–1435

    PubMed  CAS  Google Scholar 

  • Michels PAM, Michels JPJ, Boonstra J, Konings WN (1979) Generation of an electrochemical proton gradient in bacteria by the extrusion of metabolic end products. FEMS Microbiol Lett 5:357–364

    Article  CAS  Google Scholar 

  • Mitchell P (1968) Chemiosmotic coupling and energy transduction, Glynn Research Ltd., Bodmin, England

    Google Scholar 

  • Molenaar D, Bosscher JS, Ten Brink B, Driessen AJM, Konings WN (1993) Generation of a proton motive force by histidine decarboxylation and electrogenic histidine/histamine antiport inLactobacillus buchneri. J Bacteriol 175:2864–2870

    PubMed  CAS  Google Scholar 

  • Neely M, Dell CL, Olson ER (1994) Roles of LysP and CadC in mediating the lysine requirement for acid induction of theEscherichia coli cad operon. J Bacteriol 176:3278–3285

    PubMed  CAS  Google Scholar 

  • Otto R, Sonnenberg ASM, Veldkamp H, Konings WN (1980) Generation of an electrochemical proton gradient inStreptococcus cremoris by lactate efflux. Proc Natl Acad Sci USA 77:5502–5506

    Article  PubMed  CAS  Google Scholar 

  • Otto R, Lageveen RG, Veldkamp H, Konings WN (1982) Lactate efflux induced electrical potential in membrane vesicles ofStreptococcus cremoris. J Bacteriol 146:733–738

    Google Scholar 

  • Poolman B (1990) Precursor/product antiport in bacteria. Mol Microbiol 4:1629–1636

    Article  PubMed  CAS  Google Scholar 

  • Poolman B, Konings WN (1993) Secondary solute transport in bacteria. Biochim Biophys Acta 1183:5–39

    Article  PubMed  CAS  Google Scholar 

  • Poolman B, Molenaar D, Smid EJ, Ubbink T, Abee T, Renault PP, Konings WN (1991) Malolactic fermentation: electrogenic malate uptake and malate/lactate antiport generate metabolic energy. J Bacteriol 173:6030–6037

    PubMed  CAS  Google Scholar 

  • Ramos A, Poolman B, Santos H, Lolkema JS, Konings WN (1994) Uniport of anionic citrate and proton consumption in citrate metabolism generate a proton motive force inLeuconostoc oenos. J Bacteriol 176:4899–4905

    PubMed  CAS  Google Scholar 

  • Rice SL, Koehler PE (1976) Tyrosine and histidine decarboxylase activities ofPediococcus cerevisiae andLactobacillus sp. and the production of tyramine in fermented sausages. J Milk Food Technol 39:166–169

    CAS  Google Scholar 

  • Ruan ZS, Anantharam V, Crawford IT, Ambudkar SV, Rhee SY, Allison MJ, Maloney PC (1992) Identification, purification, and reconstitution of Ox1T, the oxalate: formate antiport protein ofOxalobacter formigenes. J Biol Chem 267:10537–10543

    PubMed  CAS  Google Scholar 

  • Salema M, Poolman B, Lolkema JS, Loureiro-Dias MC, Konings WN (1994) Uniport of monoanionic 1-malate in membrane vesicles fromLeuconostoc oenos. Eur J Biochem 225:289–295

    Article  PubMed  CAS  Google Scholar 

  • Schönheit P, Kristjansson JK, Thauer RK (1982) Kinetic mechanism for the ability of sulfate reducers to outcompete methanogens for acetate. Arch Microbiol 132:285–288

    Article  Google Scholar 

  • Simpson SJ, Bendall MR, Egan AF, Rogers PJ (1983a) High field phosphorous NMR studies of the stoichiometry of the lactate/proton carrier ofStreptococcus faecalis. Eur J Biochem 136:63–69

    Article  PubMed  CAS  Google Scholar 

  • Simpson SJ, Vink R, Egan AF, Rogers PJ (1983b) Lactate efflux stimulate (32Pi)-ATP exchange inStreptococcus faecalis membrane vesicles FEMS Microbiol Lett 5:85–88

    Google Scholar 

  • Smith MR, Lequerica JL (1985)Methanosarcina mutant unable to produce methane or assimilate carbon from acetate. J Bacteriol 164:618–625

    PubMed  CAS  Google Scholar 

  • Takayama M, Ohyama T, Igarashi K, Kobayashi H (1994)Escherichia coli cad operon functions as a supplier of carbon dioxide. Mol Microbiol 11:913–918

    Article  PubMed  CAS  Google Scholar 

  • Ten Brink B, Konings WN (1980) Generation of an electrochemical proton gradient by lactate efflux in membrane vesicles ofEscherichia coli. Eur J Biochem 111:59–66

    Article  PubMed  CAS  Google Scholar 

  • Ten Brink B, Konings WN (1982) Electrochemical proton gradient and lactate concentration gradient inStreptococcus cremoris cells grown in batch culture. J Bacteriol 152:682–686

    PubMed  Google Scholar 

  • Ten Brink B, Otto R, Hansen UP, Konings WN (1985) Energy recycling by lactate efflux in growing and nongrowing cells ofStreptococcus cremoris. J Bacteriol 162:383–390

    PubMed  Google Scholar 

  • Ten Brink B, Damink C, Joosten HMLJ, Huis in’t Veld (1990) Occurrence and formation of biologically active amines in foods. Int J Food Microbiol 11:3–84

    Google Scholar 

  • Van Veen HW, Abee T, Korstee GJJ, Konings WN, Zehnder AJB (1993) Characterization of two phosphate transport systems inAcinetobacter johnsonii 210A. J Bacteriol 175:200–206

    PubMed  Google Scholar 

  • Van Veen HW, Abee T, Kortstee GJJ, Konings WN, Zehnder AJB (1994a) Substrate specificity of the two phosphate transport systems ofAcinetobacter johnsonii 210A in relation to phosphate speciation in its aquatic environment. J Biol Chem 269:6212–16216

    Google Scholar 

  • Van Veen HW, Abee T, Kortstee GJJ, Konings WN, Zehnder AJB (1994b) Generation of a proton motive force by the excretion of metal phosphate in the polyphosphate-accumulatingAcinetobacter johnsonii strain 210A. J Biol Chem 269:9509–29514

    Google Scholar 

  • Van Veen HW, Abee T, Kortstee GJJ, Konings WN, Zehnder AJB (1994c) Translocation of metal phosphate via the inorganic phosphate transport system ofEscherichia coli. Biochemistry 33:1766–1770

    Article  PubMed  Google Scholar 

  • Winkler HH (1976) Rickettsial permeability. An ADP-ATP transport system. J Biol Chem 251:389–396

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konings, W.N., Lolkema, J.S. & Poolman, B. The generation of metabolic energy by solute transport. Arch. Microbiol. 164, 235–242 (1995). https://doi.org/10.1007/BF02529957

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02529957

Key words

Navigation