Skip to main content
Log in

Anaerobic metabolism of phenol in proteobacteria and further studies of phenylphosphate carboxylase

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Anaerobic phenol metabolism was studied in three facultative aerobic denitrifying bacteria, Thauera aromatica, “Aromatoleum aromaticum” strain EbN1 (Betaproteobacteria), and Magnetospirillum sp. (Alphaproteobacterium). All species formed phenylphosphate and contained phenylphosphate carboxylase but not phenol carboxylase activity. This is in contrast to direct phenol carboxylation by fermenting bacteria. Antisera raised against subunits of the Thauera phenylphosphate synthase and phenylphosphate carboxylase partly cross-reacted with the corresponding proteins in the other species. Some unsolved features of phenylphosphate carboxylase were addressed in T. aromatica. The core sub-complex of this enzyme consists of three different subunits and catalyzes the exchange of 14CO2 with the carboxyl group of 4-hydroxybenzoate, but not phenylphosphate carboxylation. It was inactivated by oxygen or by the oxidizing agent thionin and fully reactivated under reducing conditions. The purified recombinant phosphatase subunit alone had only low phenylphosphate phosphatase activity in the absence of the other components. However, activity was strongly enhanced in the presence of the core enzyme resulting in phenylphosphate carboxylation. Hence, a tight interaction of the carboxylase subunits is required for dephosphorylation of phenylphosphate, which is coupled to the concomitant carboxylation of the produced phenolate to 4-hydroxybenzoate, thus preventing a futile cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anders HJ, Kaetzke A, Kämpfer P, Ludwig W, Fuchs G (1995) Taxonomic position of aromatic-degrading denitrifying Pseudomonas strains K 172 and KB 740 and their description as new members of the genera Thauera, as Thauera aromatica sp. Nov., and Azoarcus, as Azoarcus evansii sp. nov., respectively, members of the beta subclass of the Proteobacteria. Int J Syst Bacteriol 45:327–333

    Article  CAS  PubMed  Google Scholar 

  • Bak F, Widdel F (1986) Anaerobic degradation of phenol and phenol derivatives by Desulfobacterium phenolicum sp. nov. Arch Microbiol 146:177–180

    Article  CAS  Google Scholar 

  • Bertani G (1951) Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62:293–300

    CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–252

    Article  CAS  PubMed  Google Scholar 

  • Breinig S, Schiltz E, Fuchs G (2000) Genes involved in anaerobic metabolism of phenol in the bacterium Thauera aromatica. J Bacteriol 182:5849–5863

    Article  CAS  PubMed  Google Scholar 

  • Chow KT, Pope MK, Davies J (1999) Characterization of a vanillic acid non-oxidative decarboxylation gene cluster from Streptomyces sp. D7. Microbiology 145:2393–2403

    CAS  PubMed  Google Scholar 

  • Fuchs G (2008) Anaerobic metabolism of aromatic compounds. Ann N Y Acad Sci 1125:82–99

    Article  CAS  PubMed  Google Scholar 

  • Harwood CS, Parales RE (1996) The beta-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol 50:553–590

    Article  CAS  PubMed  Google Scholar 

  • Hayaishi O (1994) Tryptophan, oxygen, and sleep. Annu Rev Biochem 63:1–24

    Article  CAS  PubMed  Google Scholar 

  • He Z, Wiegel J (1995) Purification and characterization of an oxygen-sensitive reversible 4-hydroxybenzoate decarboxylase from Clostridium hydroxybenzoicum. Eur J Biochem 229:77–82

    Article  CAS  PubMed  Google Scholar 

  • He Z, Wiegel J (1996) Purification and characterization of an oxygen-sensitive, reversible 3, 4-dihydroxybenzoate decarboxylase from Clostridium hydroxybenzoicum. J Bacteriol 178:3539–3543

    CAS  PubMed  Google Scholar 

  • Howard JL, Ridley SM (1990) Acetyl-CoA carboxylase: a rapid novel assay procedure used in conjunction with the preparation of enzyme from maize leaves. FEBS Lett 261:261–264

    Article  Google Scholar 

  • Huang J, He Z, Wiegel J (1999) Cloning, characterization, and expression of a novel gene encoding a reversible 4-hydroxybenzoate decarboxylase from Clostridium hydroxybenzoicum. J Bacteriol 181:5119–5122

    CAS  PubMed  Google Scholar 

  • Khanna P, Rajkumar B, Jothikumar N (1992) Anoxygenic degradation of aromatic substances by Rhodopseudomonas palustris. Curr Microbiol 25:63–67

    Article  CAS  PubMed  Google Scholar 

  • Kosugi Y, Imaoka Y, Gotoh F, Rahim MA, Matsui Y, Sakanishi K (2003) Carboxylations of alkali metal phenoxides with carbon dioxide. Org Biomol Chem 1:817–821

    Article  CAS  PubMed  Google Scholar 

  • Kuever J, Kulmer J, Jannsen S, Fischer U, Blotevogel KH (1993) Isolation and characterization of a new spore-forming sulfate-reducing bacterium growing by complete oxidation of catechol. Arch Microbiol 159:282–288

    Article  CAS  PubMed  Google Scholar 

  • Lack A, Fuchs G (1992) Carboxylation of phenylphosphate by phenol carboxylase, an enzyme system of anaerobic phenol metabolism. J Bacteriol 174:3629–3636

    CAS  PubMed  Google Scholar 

  • Lack A, Fuchs G (1994) Evidence that phenol phosphorylation to phenylphosphate is the first step in anaerobic phenol metabolism in a denitrifying Pseudomonas sp. Arch Microbiol 161:132–139

    CAS  PubMed  Google Scholar 

  • Lack A, Tommasi I, Aresta M, Fuchs G (1991) Catalytic properties of phenol carboxylase. In vitro study of CO2: 4-hydroxybenzoate isotope exchange reaction. Eur J Biochem 197:473–479

    Article  CAS  PubMed  Google Scholar 

  • Lämmli UK (1970) Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  Google Scholar 

  • Leppik RA, Young IG, Gibson F (1976) Membrane-associated reactions in ubiquinone biosynthesis in Escherichia coli. 3-Octaprenyl-4-hydroxybenzoate carboxy-lyase. Biochim Biophys Acta 436:800–810

    Article  CAS  PubMed  Google Scholar 

  • Li T, Juteau P, Beaudet R, Lepine F, Villemur R, Bisaillon JG (2000) Purification and characterization of a 4-hydroxybenzoate decarboxylase from an anaerobic coculture. Can J Microbiol 46:856–859

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Zhang X, Zhou S, Tao P, Liu J (2007) Purification and characterization of a 4-hydroxybenzoate decarboxylase from Chlamydophila pneumoniae AR39. Curr Microbiol 54:102–107

    Article  CAS  PubMed  Google Scholar 

  • Lovley DR, Lonergan DJ (1990) Anaerobic oxidation of toluene, phenol, and p-cresol by the dissimilatory iron-reducing organism, GS-15. Appl Environ Microbiol 56:1858–1864

    CAS  PubMed  Google Scholar 

  • Lupa B, Lyon D, Gibbs MD, Reeves RA, Wiegel J (2005) Distribution of genes encoding the microbial non-oxidative reversible hydroxyarylic acid decarboxylases/phenol carboxylases. Genomics 86:342–351

    Article  CAS  PubMed  Google Scholar 

  • Lupa B, Lyon D, Shaw LN, Sieprawska-Lupa M, Wiegel J (2008) Properties of the reversible nonoxidative vanillate/4-hydroxybenzoate decarboxylase from Bacillus subtilis. Can J Microbiol 54:75–81

    Article  CAS  PubMed  Google Scholar 

  • Matsui T, Yoshida T, Hayashi T, Nagasawa T (2006) Purification, characterization, and gene cloning of 4-hydroxybenzoate decarboxylase of Enterobacter cloacae P240. Arch Microbiol 186:21–29

    Article  CAS  PubMed  Google Scholar 

  • Meganathan R (2001) Ubiquinone biosynthesis in microorganisms. FEMS Microbiol Lett 203:131–139

    Article  CAS  PubMed  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  CAS  PubMed  Google Scholar 

  • Narmandakh A, Gad’on N, Drepper F, Knapp B, Haehnel W, Fuchs G (2006) Phosphorylation of phenol by phenylphosphate synthase: role of histidine phosphate in catalysis. J Bacteriol 188:7815–7822

    Article  CAS  PubMed  Google Scholar 

  • Rabus R, Widdel F (1995) Anaerobic degradation of ethylbenzene and other aromatic hydrocarbons by new denitrifying bacteria. Arch Microbiol 163:96–103

    Article  CAS  PubMed  Google Scholar 

  • Rabus R, Kube M, Heider J, Beck A, Heitmann K, Widdel F, Reinhardt R (2005) The genome sequence of an anaerobic aromatic-degrading denitrifying bacterium, strain EbN1. Arch Microbiol 183:27–36

    Article  CAS  PubMed  Google Scholar 

  • Schleinitz KM, Schmeling S, Jehmlich N, von Bergen M, Harms H, Kleinsteuber S, Vogt C, Fuchs G (2009) Phenol degradation in the strictly anaerobic iron reducing bacterium Geobacter metallireducens GS-15. Appl Envir Microbiol 75:3912–3919

    Article  CAS  Google Scholar 

  • Schmeling S, Narmandakh A, Schmitt O, Gad’on N, Schühle K, Fuchs G (2004) Phenylphosphate synthase: a new phosphotransferase catalyzing the first step in anaerobic phenol metabolism in Thauera aromatica. J Bacteriol 186:8044–8057

    Article  CAS  PubMed  Google Scholar 

  • Schühle K, Fuchs G (2004) Phenylphosphate carboxylase: a new C–C lyase involved in anaerobic phenol metabolism in Thauera aromatica. J Bacteriol 186:4556–4567

    Article  PubMed  CAS  Google Scholar 

  • Shinoda Y, Sakai Y, Ue M, Hiraishi A, Kato N (2000) Isolation and characterization of a new denitrifying spirillum capable of anaerobic degradation of phenol. Appl Environ Microbiol 66:1286–1291

    Article  CAS  PubMed  Google Scholar 

  • Solyanikova IP, Golovleva LA (1999) Phenol hydroxylases: an update. Biochemistry (Mosc) 64:365–372

    CAS  Google Scholar 

  • Tschech A, Fuchs G (1987) Anaerobic degradation of phenol by pure cultures of newly isolated denitrifying pseudomonads. Arch Microbiol 148:213–217

    Article  CAS  PubMed  Google Scholar 

  • Tschech A, Fuchs G (1989) Anaerobic degradation of phenol via carboxylation to 4-hydroxybenzoate: in vitro study of isotope exchange between 14CO2 and 4-hydroxybenzoate. Arch Microbiol 152:594–599

    Article  CAS  Google Scholar 

  • van Schie PM, Young LY (1998) Isolation and characterization of phenol-degrading denitrifying bacteria. Appl Environ Microbiol 64:2432–2438

    PubMed  Google Scholar 

  • Wöhlbrand L, Kallerhoff B, Lange D, Hufnagel P, Thiermann J, Reinhardt R, Rabus R (2007) Functional proteomic view of metabolic regulation in “Aromatoleum aromaticum” strain EbN1. Proteomics 7:2222–2239

    Article  PubMed  CAS  Google Scholar 

  • Zehr BD, Savin TJ, Hall RE (1989) A one-step, low-background Commassie staining procedure for polyacrylamide gels. Anal Biochem 182:157–159

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Wiegel J (1990) Sequential anaerobic degradation of 2, 4-dichlorophenol in freshwater sediments. Appl Environ Microbiol 56:1119–1127

    CAS  PubMed  Google Scholar 

  • Zhang X, Wiegel J (1992) The anaerobic degradation of 3-chloro-4-hydroxybenzoate in freshwater sediment proceeds via either chlorophenol or hydroxybenzoate to phenol and subsequently to benzoate. Appl Environ Microbiol 58:3580–3585

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This investigation was supported by a grant of the Deutsche Forschungsgemeinschaft (DFG) and by the Fonds der Chemischen Industrie. Thanks are due to Karola Schühle for invaluable advices and help concerning the purification of phenylphosphate carboxylase. Magnetospirillum sp. strain CC-26 was a gift from Yoshifumi Shinoda. His advices concerning the cultivation of this strain are thankfully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Fuchs.

Additional information

Communicated by Wolfgang Buckel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmeling, S., Fuchs, G. Anaerobic metabolism of phenol in proteobacteria and further studies of phenylphosphate carboxylase. Arch Microbiol 191, 869–878 (2009). https://doi.org/10.1007/s00203-009-0519-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-009-0519-2

Keywords

Navigation