Skip to main content
Log in

Protocatechuate 4,5-dioxygenase from Comamonas testosteroni T-2: biochemical and molecular properties of a new subgroup within class III of extradiol dioxygenases

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Comamonas testosteroni T-2 degraded at least eight aromatic compounds via protocatechuate (PCA), whose extradiol ring cleavage to 2-hydroxy-4-carboxymuconate semialdehyde (HCMS) was catalysed by PCA 4,5-dioxygenase (PmdAB). This inducible, heteromultimeric enzyme was purified. It contained two subunits, α (PmdA) and β (PmdB), and the molecular masses of the denatured proteins were 18 kDa and 31 kDa, respectively. PCA was converted stoichiometrically to HCMS with an apparent Km of 55 μM and at a maximum velocity of 1.5 μkat. Structure–activity-relationship analysis by testing 16 related compounds as substrate for purified PmdAB revealed an absolute requirement for the vicinal diol and for the carboxylate group of PCA. Besides PCA, only 5′-hydroxy-PCA (gallate) induced oxygen uptake. The N-terminal amino acid sequence of each subunit was identical to the corresponding sequences in C. testosteroni BR6020, which facilitated sequencing of the pmdAB genes in strain T-2. Small differences in the amino acid sequence had significant effects on enzyme stability. Several homologues of pmdAB were found in sequence databases. Residues involved in substrate binding are highly conserved among the homologues. Their sequences grouped within the class III extradiol dioxygenases. Based on our biochemical and genetic analyses, we propose a new branch of the heteromultimeric enzymes within that class.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    CAS  PubMed  Google Scholar 

  • Arciero DM, Lipscomb JD (1986) Binding of 17O-labeled substrate and inhibitors to protocatechuate 4,5-dioxygenase-nitrosyl complex. J Biol Chem 261:2170–2178

    CAS  PubMed  Google Scholar 

  • Arciero DM, Lipscomb JD, Huynh BH, Kent TA, Münck E (1983) EPR and Mössbauer studies of protocatechuate 4,5-dioxygenase. Characterization of a new Fe2+ environment. J Biol Chem 258:14981–14991

    Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Busse H-J, El-Banna T, Oyaizu H, Auling G (1992) Identification of xenobiotic-degrading isolates from the beta subclass of the Proteobacteria by a polyphasic approach including 16S rRNA partial sequencing. Int J Syst Bacteriol 42:19–26

    Google Scholar 

  • Contzen M, Bürger S, Stolz A (2001) Cloning of the genes for a 4-sulphocatechol-oxidizing protocatechuate 3,4-dioxygenase from Hydrogenophaga intermedia S1 and identification of the amino acid residues responsible for the ability to convert 4-sulphocatechol. Mol Microbiol 41:199–205

    Article  Google Scholar 

  • Cook AM (1987) Biodegradation of s-triazine xenobiotics. FEMS Microbiol Rev 46:93–116

    Article  CAS  Google Scholar 

  • Cook AM, Laue H, Junker F (1999) Microbial desulfonation. FEMS Microbiol Rev 22:399–419

    Article  Google Scholar 

  • Dagley S, Evans WC, Ribbons DW (1960) New pathways in the oxidative metabolism of aromatic compounds by micro-organisms. Nature (Lond) 188:560–566

    Google Scholar 

  • Dagley S, Geary PJ, Wood JM (1968) The metabolism of protocatechuate by Pseudomonas testosteroni. Biochem J 109:559–568

    Google Scholar 

  • Eaton RW (2001) Plasmid-encoded phthaltate catabolic pathway in Arthrobacter keyseri 12B. J Bacteriol 183:3689–3703

    Article  Google Scholar 

  • Eltis LD, Bolin JT (1996) Evolutionary relationships among extradiol dioxygenases. J Bacteriol 178:5930–5937

    CAS  PubMed  Google Scholar 

  • Fersht AR (1999) Structure and mechanism in protein science. Freeman, New York

    Google Scholar 

  • Hara H, Masai E, Miyauchi K, Katayama Y, Fukuda M (2003) Characterization of the 4-carboxy-4-hydroxy-2-oxoadipate aldolase gene and operon structure of the protocatechuate 4,5-cleavage pathway genes in Sphingomonas paucimobilis SYK-6. J Bacteriol 185:41–50

    Article  Google Scholar 

  • Harayama S, Rekik M (1989) Bacterial aromatic ring-cleavage enzymes are classified in two different gene families. J Biol Chem 264:15328–15333

    Google Scholar 

  • Harayama S, Rekik M (1993) Comparison of the nucleotide sequences of the meta-cleavage pathway genes of TOL plasmid pWW0 from Pseudomonas putida with other meta-cleavage genes suggests that both single and multiple nucleotide substitutions contribute to enzyme evolution. Mol Gen Genet 239:81–89

    Google Scholar 

  • Harayama S, Kok M, Neidle EL (1992) Functional and evolutionary relationships among diverse oxygenases. Annu Rev Microbiol 46:565–601

    Article  CAS  PubMed  Google Scholar 

  • Hirose J, Kimura N, Suyama A, Kobayashi A, Hayashida S, Furukawa K (1994) Functional and structural relationship of various extradiol aromatic ring-cleavage dioxygenases of Pseudomonas origin. FEMS Microbiol Lett 118:273–277

    Article  Google Scholar 

  • Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ (1998) Multiple sequence alignment with Clustal X. Trends Biochem Sci 23:403–405

    Article  CAS  PubMed  Google Scholar 

  • Junker F, Field JA, Bangerter F, Ramsteiner K, Kohler H-P, Joannou CL, Mason JR, Leisinger T, Cook AM (1994a) Oxygenation and spontaneous deamination of 2-aminobenzenesulphonic acid in Alcaligenes sp. strain O-1 with subsequent meta ring cleavage and spontaneous desulphonation to 2-hydroxymuconic acid. Biochem J 300:429–436

    Google Scholar 

  • Junker F, Leisinger T, Cook AM (1994b) 3-Sulphocatechol 2,3-dioxygenase and other dioxygenases (EC 1.13.11.2 and EC 1.14.12.-) in the degradative pathways of 2-aminobenzenesulphonic, benzenesulphonic and 4-toluenesulphonic acids in Alcaligenes sp. strain O-1. Microbiology 140:1713–1722

    Google Scholar 

  • Junker F, Saller E, Schläfli Oppenberg HR, Kroneck PMH, Leisinger T, Cook AM (1996) Degradative pathways for p-toluenecarboxylate and p-toluenesulfonate and their multi-component oxygenases in Comamonas testosteroni strains PSB-4 and T-2. Microbiology 142:2419–2427

    Google Scholar 

  • Kennedy SIT, Fewson CA (1968) Enzymes of the mandelate pathway in bacterium N.C.I.B. 8250. Biochem J 107:497–506

    Google Scholar 

  • Kersten PJ, Chapman PJ, Dagley S (1985) Enzymatic release of halogens or methanol from some substituted protocatechuic acids. J Bacteriol 162:693–697

    Google Scholar 

  • Larimer FW, et al (2004) Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nat Biotechnol 22:55–61

    Google Scholar 

  • Laue H, Cook AM (2000) Purification, properties and primary structure of alanine dehydrogenase involved in taurine metabolism in the anaerobe Bilophila wadsworthia. Arch Microbiol 174:162–167

    Article  Google Scholar 

  • Laue H, Field JA, Cook AM (1996) Bacterial desulfonation of the ethanesulfonate metabolite of the chloroacetanilide herbicide metazachlor. Environ Sci Technol 30:1129–1132

    Article  Google Scholar 

  • Laue H, Friedrich M, Ruff J, Cook AM (2001) Dissimilatory sulfite reductase (desulfoviridin) of the taurine- degrading, non-sulfate-reducing bacterium Bilophila wadsworthia RZATAU contains a fused DsrB-DsrD subunit. J Bacteriol 183:1727–1733

    Article  Google Scholar 

  • Locher HH, Leisinger T, Cook AM (1989) Degradation of p-toluenesulphonic acid via sidechain oxidation, desulphonation and meta ring cleavage in Pseudomonas (Comamonas) testosteroni T-2. J Gen Microbiol 135:1969–1978

    Google Scholar 

  • Locher HH, Leisinger T, Cook AM (1991) 4-Sulphobenzoate 3,4-dioxygenase: purification and properties of a desulphonative two-component enzyme system from Comamonas testosteroni T-2. Biochem J 274:833–842

    Google Scholar 

  • Mampel J (2000) Transport und Regulationsphänomene beim Abbau von 4-Toluolsulfonat in Comamonas testosteroni. PhD Thesis, Department of Biology, University of Konstanz

  • Mampel J, Maier E, Tralau T, Ruff J, Benz R, Cook AM (2004) A novel outer-membrane anion channel (porin) as part of a putatively two-component transport system for 4-toluenesulphonate in Comamonas testosteroni T-2. Biochem J 383:91–99

    Article  Google Scholar 

  • Maruyama K, Shibayama T, Ichikawa A, Sakou Y, Yamada S, Sugisaki H (2004) Cloning and characterization of the genes encoding enzymes for the protocatechuate meta-degradation pathway of Pseudomonas ochraceae NGJ1. Biosci Biotechnol Biochem 68:1434–1441

    Article  Google Scholar 

  • Nakatsu CH, Straus NA, Wyndham RC (1995) The nucleotide sequence of the Tn 5271 3-chlorobenzoate 3,4-dioxygenase genes (cbaAB) unites the class IA oxygenases in a single lineage. Microbiology 141:485–495

    CAS  PubMed  Google Scholar 

  • Neuhoff V, Arold N, Taube D, Ehrhardt W (1988) Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 9:255–262

    CAS  PubMed  Google Scholar 

  • Noda Y, Nishikawa S, Shiozuka K, Kadokura H, Nakajima H (1990) Molecular cloning of the protocatechuate 4,5-dioxygenase genes of Pseudomonas paucimobilis. J Bacteriol 172:2704–2709

    Google Scholar 

  • Peng X et al. (1998) Cloning of a Sphingomonas paucimobilis SYK-6 gene encoding a novel oxygenase that cleaves lignin-related biphenyl and characterization of the enzyme. Appl Environ Microbiol 64:2520–2527

    Google Scholar 

  • Providenti MA, Mampel J, MacSween S, Cook AM, Wyndham RC (2001) Comamonas testosteroni BR6020 possesses a single genetic locus for extradiol cleavage of protocatechuate. Microbiology 147:2157–2167

    Google Scholar 

  • Ribbons DW, Evans DC (1960) Oxidative metabolism of phthalic acid by soil pseudomonads. Biochem J 76:310–318

    Google Scholar 

  • Saccone C, Lanave C, Pesole G, Preparata G (1990) Influence of base composition on quantitative estimates of gene evolution. Methods Enzymol 183:570–583

    Google Scholar 

  • Saccone C, Lanave C, Pesole G (1993) Time and biosequences. Int J Syst Evol Microbiol 37:154–159

    Google Scholar 

  • Sato S-I, Ouchiyama N, Kimura T, Nojiri H, Yamane H, Omori T (1997) Cloning of genes involved in carbazole degradation of Pseudomonas sp. strain CA10: nucleotide sequences of genes and characterization of meta-cleavage enzymes and hydrolase. J Bacteriol 179:4841–4849

    CAS  PubMed  Google Scholar 

  • Schägger H, von Jagow G (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379

    PubMed  Google Scholar 

  • Schläfli Oppenberg HR, Chen G, Leisinger T, Cook AM (1995) Regulation of the degradative pathways from 4-toluenesulphonate and 4-toluenecarboxylate to protocatechuate in Comamonas testosteroni T-2. Microbiology 141:1891–1899

    Google Scholar 

  • Spence EL, Kawamukai M, Sanvoisin J, Braven H, Bugg TDH (1996) Catechol dioxygenases from Escherichia coli (MhpB) and Alcaligenes eutrophus (MpcI): sequence analysis and biochemical properties of a third family of extradiol dioxygenases. J Bacteriol 178:5249–5256

    CAS  PubMed  Google Scholar 

  • Sugimoto K, Senda T, Aoshima H, Masai E, Fukuda M, Mitsui Y (1999) Crystal structure of an aromatic ring opening dioxygenase LigAB, a protocatechuate 4,5-dioxygenase, under aerobic conditions. Structure (Lond) 7:953–965

    Google Scholar 

  • Thurnheer T, Köhler T, Cook AM, Leisinger T (1986) Orthanilic acid and analogues as carbon sources for bacteria: growth physiology and enzymic desulphonation. J Gen Microbiol 132:1215–1220

    Google Scholar 

  • Tralau T, Cook AM, Ruff J (2001) Map of the IncP1b plasmid pTSA encoding the widespread genes (tsa) for p-toluenesulfonate degradation in Comamonas testosteroni T-2. Appl Environ Microbiol 67:1508–1516

    Article  Google Scholar 

  • Tralau T, Cook AM, Ruff J (2003a) An additional regulator, TsaQ, is involved with TsaR in regulation of transport during the degradation of p-toluenesulfonate in Comamonas testosteroni T-2. Arch Microbiol 180:319–326

    Article  Google Scholar 

  • Tralau T, Mampel J, Cook AM, Ruff J (2003b) Characterization of TsaR, an oxygen-sensitive LysR-type regulator for the degradation of p-toluenesulfonate in Comamonas testosteroni T-2. Appl Environ Microbiol 69:2298–2305

    Article  Google Scholar 

  • Vuilleumier S, Ivos N, Dean M, Leisinger T (2001) Sequence variation in dichloromethane dehalogenases/glutathione S-transferases. Microbiology 147:611–619

    Google Scholar 

  • Wattiau P, Bastiaens L, van Herwijnen R, Daal L, Parsons JR, Renard ME, Springael D, Cornelis GR (2001) Fluorene degradation by Sphingomonas sp. LB126 proceeds through protocatechuic acid: a genetic analysis. Res Microbiol 152:861–872

    Article  Google Scholar 

  • Yun SH, Yun CY, Kim SI (2004) Characterization of protocatechuate 4,5-dioxygenase induced from p-hydroxybenzoate-cultured Pseudomonas sp. K82. J Microbiol 42:152–155

    Google Scholar 

  • Zabinski R, Münck E, Champion PM, Wood JM (1972) Kinetic and Mossbauer studies on the mechanism of protocatechuic acid 4,5-oxygenase. Biochemistry 11:3212–3219

    Google Scholar 

Download references

Acknowledgements

We are grateful to T. Tralau, who kindly did the Markov analyses, and to D. Schleheck, who did the lutidinic acid experiment. J.M. was funded by the Deutsche Forschungsgemeinschaft (to A.M.C. and J. Ruff) and BASF/BMBF, and M.A.P. by the Alexander von Humboldt Stiftung. Further funds were from the University of Konstanz and the Fonds der Chemischen Industrie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Mampel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mampel, J., Providenti, M.A. & Cook, A.M. Protocatechuate 4,5-dioxygenase from Comamonas testosteroni T-2: biochemical and molecular properties of a new subgroup within class III of extradiol dioxygenases. Arch Microbiol 183, 130–139 (2005). https://doi.org/10.1007/s00203-004-0755-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-004-0755-4

Keywords

Navigation