Skip to main content
Log in

Automated DXA-based finite element analysis for hip fracture risk stratification: a cross-sectional study

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Fracture risk indices (FRIs) generated from DXA-based finite element analysis were associated with hip fracture independent of FRAX score computed with femoral neck bone mineral density (BMD). Prospective studies are warranted to determine whether FRIs represent an improvement over BMD for predicting incident hip fractures.

Introduction

The study aims to examine the association between prior hip fracture and FRIs derived from automated finite element analysis (FEA) of DXA hip scans. Femoral neck, intertrochanteric, and subtrochanteric FRIs were calculated as the von Mises stress induced by a sideways fall divided by the bone yield stress over the specified region of interest (ROI).

Methods

Using the Manitoba Bone Mineral Density Database, we selected women age ≥ 65 years with femoral neck T-scores below − 1 and no osteoporosis treatment. From this population, we identified 324 older women with hip fracture before DXA testing and a random sample of 658 non-fracture controls. FRIs were derived from the anonymized DXA scans. Logistic regression models were used to estimate odds ratios (ORs) and 95% confidence intervals (95% CIs) for the associations between FRIs (per SD increase) and hip fracture.

Results

After adjusting for FRAX score (hip fracture with BMD), femoral neck FRI (OR 1.36, 95% CI 1.13, 1.64), intertrochanteric FRI (OR 1.81, 95% CI 1.44, 2.27), and subtrochanteric FRI (OR 2.09, 95% CI 1.68, 2.60) were associated with hip fracture. Intertrochanteric and subtrochanteric FRIs gave significantly higher c-statistics (all P ≤ 0.05) than femoral neck BMD. Subgroup analyses showed that all FRIs were more strongly associated with hip fracture in women who were younger and had higher body mass index (BMI) or non-osteoporotic BMD (all P interaction < 0.1).

Conclusions

FRIs derived from DXA-based FEA were independently associated with prior hip fracture, suggesting that they could potentially improve hip fracture risk assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A (2007) Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025. J Bone Miner Res 22:465–475

    Article  PubMed  Google Scholar 

  2. Melton LJ 3rd, Gabriel SE, Crowson CS, Tosteson AN, Johnell O, Kanis JA (2003) Cost-equivalence of different osteoporotic fractures. Osteoporos Int 14:383–388

    Article  PubMed  Google Scholar 

  3. Randell AG, Nguyen TV, Bhalerao N, Silverman SL, Sambrook PN, Eisman JA (2000) Deterioration in quality of life following hip fracture: a prospective study. Osteoporos Int 11:460–466

    Article  CAS  PubMed  Google Scholar 

  4. Ng DCE, Lam WWC, Goh ASW (2015) Pitfalls in diagnostic radiology. Spinger, Verlag Berlin Heidelberg

    Google Scholar 

  5. Kanis JA, Borgstrom F, De Laet C, Johansson H, Johnell O, Jonsson B, Oden A, Zethraeus N, Pfleger B, Khaltaev N (2005) Assessment of fracture risk. Osteoporos Int 16:581–589

    Article  PubMed  Google Scholar 

  6. Nguyen ND, Frost SA, Center JR, Eisman JA, Nguyen TV (2008) Development of prognostic nomograms for individualizing 5-year and 10-year fracture risks. Osteoporos Int 19:1431–1444

    Article  CAS  PubMed  Google Scholar 

  7. Martin DE, Severns AE, Kabo JM (2004) Determination of mechanical stiffness of bone by pQCT measurements: correlation with non-destructive mechanical four-point bending test data. J Biomech 37:1289–1293

    Article  PubMed  Google Scholar 

  8. Majumdar S, Link TM, Millard J, Lin JC, Augat P, Newitt D, Lane N, Genant HK (2000) In vivo assessment of trabecular bone structure using fractal analysis of distal radius radiographs. Med Phys 27:2594–2599

    Article  CAS  PubMed  Google Scholar 

  9. Vanleene M, Rey C, Ho Ba Tho MC (2008) Relationships between density and Young’s modulus with microporosity and physico-chemical properties of Wistar rat cortical bone from growth to senescence. Med Eng Phys 30:1049–1056

    Article  CAS  PubMed  Google Scholar 

  10. Orwoll ES, Marshall LM, Nielson CM et al (2009) Finite element analysis of the proximal femur and hip fracture risk in older men. J Bone Miner Res 24:475–483

    Article  PubMed  Google Scholar 

  11. Luo Y (2016) A biomechanical sorting of clinical risk factors affecting osteoporotic hip fracture. Osteoporos Int 27:423–439

    Article  CAS  PubMed  Google Scholar 

  12. Christen D, Webster DJ, Muller R (2010) Multiscale modelling and nonlinear finite element analysis as clinical tools for the assessment of fracture risk. Philos Trans A Math Phys Eng Sci 368:2653–2668

    Article  PubMed  Google Scholar 

  13. Kopperdahl DL, Aspelund T, Hoffmann PF, Sigurdsson S, Siggeirsdottir K, Harris TB, Gudnason V, Keaveny TM (2014) Assessment of incident spine and hip fractures in women and men using finite element analysis of CT scans. J Bone Miner Res 29:570–580

    Article  PubMed  PubMed Central  Google Scholar 

  14. Keaveny TM, Marshall LM, Nielson CM, Cummings SR, Hoffmann PF, Kopperdahl DL, Orwoll ES (2008) Finite element analysis of proximal femur QCT scans for the assessment of hip fracture risk in older men. J Bone Miner Res 23:S112–S112

    Google Scholar 

  15. Dragomir-Daescu D, Salas C, Uthamaraj S, Rossman T (2015) Quantitative computed tomography-based finite element analysis predictions of femoral strength and stiffness depend on computed tomography settings. J Biomech 48:153–161

    Article  PubMed  Google Scholar 

  16. Zysset P, Qin L, Lang T, Khosla S, Leslie WD, Shepherd JA, Schousboe JT, Engelke K (2015) Clinical use of quantitative computed tomography-based finite element analysis of the hip and spine in the management of osteoporosis in adults: the 2015 ISCD official positions-part II. J Clin Densitom 18:359–392

    Article  PubMed  Google Scholar 

  17. Damilakis J, Adams JE, Guglielmi G, Link TM (2010) Radiation exposure in X-ray-based imaging techniques used in osteoporosis. Eur Radiol 20:2707–2714

    Article  PubMed  PubMed Central  Google Scholar 

  18. Luo YH, Ferdous Z, Leslie WD (2013) Precision study of DXA-based patient-specific finite element modeling for assessing hip fracture risk. Int J Numer Meth Bio 29:615–629

    Article  Google Scholar 

  19. Luo Y, Ferdous Z, Leslie WD (2011) A preliminary dual-energy X-ray absorptiometry-based finite element model for assessing osteoporotic hip fracture risk. P I Mech Eng H 225:1188–1195

    Article  CAS  Google Scholar 

  20. Leslie WD, Metge C (2003) Establishing a regional bone density program: lessons from the Manitoba experience. J Clin Densitom 6:275–282

    Article  PubMed  Google Scholar 

  21. Leslie WD, Caetano PA, MacWilliam LR, Finlayson GS (2005) Construction and validation of a population-based bone densitometry database. J Clin Densitom 8:25–30

    Article  PubMed  Google Scholar 

  22. Kanis JA, Oden A, Johansson H, Borgstrom F, Strom O, McCloskey E (2009) FRAX and its applications to clinical practice. Bone 44:734–743

    Article  PubMed  Google Scholar 

  23. Lix LM, Azimaee M, Osman BA, Caetano P, Morin S, Metge C, Goltzman D, Kreiger N, Prior J, Leslie WD (2012) Osteoporosis-related fracture case definitions for population-based administrative data. BMC Public Health 12:301

    Article  PubMed  PubMed Central  Google Scholar 

  24. O’Donnell S (2013) Use of administrative data for national surveillance of osteoporosis and related fractures in Canada: results from a feasibility study. Arch Osteoporos 8:143

    Article  PubMed  PubMed Central  Google Scholar 

  25. Naylor KE, McCloskey EV, Eastell R, Yang L (2013) Use of DXA-based finite element analysis of the proximal femur in a longitudinal study of hip fracture. J Bone Miner Res 28:1014–1021

    Article  PubMed  Google Scholar 

  26. Yang L, Palermo L, Black DM, Eastell R (2014) Prediction of incident hip Fracture with the estimated femoral strength by finite element analysis of DXA scans in the Study of Osteoporotic Fractures. J Bone Miner Res 29:2594–2600

    Article  PubMed  PubMed Central  Google Scholar 

  27. Helgason B, Perilli E, Schileo E, Taddei F, Brynjolfsson S, Viceconti M (2008) Mathematical relationships between bone density and mechanical properties: a literature review. Clin Biomech 23:135–146

    Article  Google Scholar 

  28. Morgan EF, Bayraktar HH, Keaveny TM (2003) Trabecular bone modulus-density relationships depend on anatomic site. J Biomech 36:897–904

    Article  PubMed  Google Scholar 

  29. Morgan EF, Keaveny TM (2001) Dependence of yield strain of human trabecular bone on anatomic site. J Biomech 34:569–577

    Article  CAS  PubMed  Google Scholar 

  30. van den Kroonenberg AJ, Hayes WC, McMahon TA (1995) Dynamic models for sideways falls from standing height. J Biomech Eng 117:309–318

    Article  PubMed  Google Scholar 

  31. Yoshikawa T, Turner CH, Peacock M, Slemenda CW, Weaver CM, Teegarden D, Markwardt P, Burr DB (1994) Geometric structure of the femoral-neck measured using dual-energy X-ray absorptiometry. J Bone Miner Res 9:1053–1064

    Article  CAS  PubMed  Google Scholar 

  32. Cole JH, van der Meulen MC (2011) Whole bone mechanics and bone quality. Clin Orthop Relat Res 469:2139–2149

    Article  PubMed  PubMed Central  Google Scholar 

  33. Leslie WD, Lix LM, Johansson H, Oden A, McCloskey E, Kanis JA, Manitoba Bone Density P (2010) Independent clinical validation of a Canadian FRAX tool: fracture prediction and model calibration. J Bone Miner Res 25:2350–2358

    Article  PubMed  Google Scholar 

  34. Fraser LA, Langsetmo L, Berger C et al (2011) Fracture prediction and calibration of a Canadian FRAXA (R) tool: a population-based report from CaMos. Osteoporos Int 22:829–837

    Article  PubMed  Google Scholar 

  35. Delong ER, Delong DM, Clarke-Pearson DL (1988) Comparing areas under two or more correlated reciever operating characteristics curves: a nonparamentric approach. Biometrics 44:837–845

    Article  CAS  PubMed  Google Scholar 

  36. Pencina MJ, D’Agostino RB Sr, Steyerberg EW (2011) Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers. Stat Med 30:11–21

    Article  PubMed  Google Scholar 

  37. Beck TJ, Oreskovic TL, Stone KL, Ruff CB, Ensrud K, Nevitt MC, Genant HK, Cummings SR (2001) Structural adaptation to changing skeletal load in the progression toward hip fragility: the study of osteoporotic fractures. J Bone Miner Res 16:1108–1119

    Article  CAS  PubMed  Google Scholar 

  38. Kaptoge S, Beck TJ, Reeve J, Stone KL, Hillier TA, Cauley JA, Cummings SR (2008) Prediction of incident hip fracture risk by femur geometry variables measured by hip structural analysis in the study of osteoporotic fractures. J Bone Miner Res 23:1892–1904

    Article  PubMed  PubMed Central  Google Scholar 

  39. Leslie WD, Lix LM, Morin SN, Johansson H, Oden A, McCloskey EV, Kanis JA (2015) Hip axis length is a FRAX- and bone density-independent risk factor for hip fracture in women. J Clin Endocr Metab 100:2063–2070

    Article  CAS  PubMed  Google Scholar 

  40. Johnell O, Kanis JA, Oden A et al (2005) Predictive value of BMD for hip and other fractures. J Bone Miner Res 20:1185–1194

    Article  PubMed  Google Scholar 

  41. McCloskey EV, Oden A, Harvey NC et al (2016) A meta-analysis of trabecular bone score in fracture risk prediction and its relationship to FRAX. J Bone Miner Res 31:940–948

    Article  PubMed  Google Scholar 

  42. Reider L, Beck TJ, Hochberg MC, Hawkes WG, Orwig D, YuYahiro JA, Hebel JR, Magaziner J, Res SOF (2010) Women with hip fracture experience greater loss of geometric strength in the contralateral hip during the year following fracture than age-matched controls. Osteoporos Int 21:741–750

    Article  CAS  PubMed  Google Scholar 

  43. Fox KM, Magaziner J, Hawkes WG, Yu-Yahiro J, Hebel JR, Zimmerman SI, Holder L, Michael R (2000) Loss of bone density and lean body mass after hip fracture. Osteoporos Int 11:31–35

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Manitoba Centre for Health Policy for use of data contained in the Population Health Research Data Repository (HIPC# 2008/2009-33). The results and conclusions are those of the authors, and no official endorsement by the Manitoba Centre for Health Policy, Manitoba Health, Healthy Living and Seniors, or other data providers is intended or should be inferred.

Funding

This study was funded through a Manitoba Partnership Program Grant from Research Manitoba and the Canadian Institutes of Health Research (CIHR# 326175).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. D. Leslie.

Ethics declarations

Conflicts of interest

None.

Electronic supplementary material

ESM 1

Bone mineral density (BMD) bone map extraction procedure (a) BMD image with proximal femur outline (green), (b) BMD image with femoral head outline (green), (c) BMD image with total femur outline after merging outlines shown in A and B, and (d) final BMD bone map (PPTX 136 kb)

ESM 2

A convergence curve showing the variation of intertrochanteric fracture risk index (FRI) with the number of nodes and a finite element mesh generated from the femoral bone outline (PPTX 179 kb)

ESM 3

(DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Leslie, W.D., Luo, Y. et al. Automated DXA-based finite element analysis for hip fracture risk stratification: a cross-sectional study. Osteoporos Int 29, 191–200 (2018). https://doi.org/10.1007/s00198-017-4232-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-017-4232-8

Keywords

Navigation