Skip to main content
Log in

Radiographic texture analysis of densitometer-generated calcaneus images differentiates postmenopausal women with and without fractures

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Introduction

Bone fragility is determined by bone mass, measured as bone mineral density (BMD), and by trabecular structure, which cannot be easily measured using currently available noninvasive methods. In previous studies, radiographic texture analysis (RTA) performed on the radiographic images of the spine, proximal femur, and os calcis differentiated subjects with and without osteoporotic fractures. The present cross-sectional study was undertaken to determine whether such differentiation could also be made using high-resolution os calcis images obtained on a peripheral densitometer.

Methods

In 170 postmenopausal women (42 with and 128 without prevalent vertebral fractures) who had no secondary causes of osteoporosis and were not receiving treatment for osteoporosis, BMD of the lumbar spine, proximal femur, and os calcis was measured using dual energy x-ray absorptiometry. Vertebral fractures were diagnosed on densitometric spine images. RTA, including Fourier-based and fractal analyses, was performed on densitometric images of os calcis.

Results

BMD at all three sites and all texture features was significantly different in subjects with and without fractures, with the most significant differences observed for the femoral neck and total hip measurements and for the RTA feature Minkowski fractal (p<0.001). In univariate logistic regression analysis, Minkowski fractal predicted the presence of vertebral fractures as well as femoral neck BMD (p<0.001). In multivariate logistic regression analysis, both femoral neck BMD and Minkowski fractal yielded significant predictive effects (p=0.001), and when age was added to the model, the effect of RTA remained significant (p=0.002), suggesting that RTA reflects an aspect of bone fragility that is not captured by age or BMD. Finally, when RTA was compared in 42 fracture patients and 42 nonfracture patients matched for age and BMD, the RTA features were significantly different between the groups (p=0.003 to p=0.04), although BMD and age were not.

Conclusion

This study suggests that RTA of densitometer-generated calcaneus images provides an estimate of bone fragility independent of and complementary to BMD measurement and age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ross PD, Davis JW, Vogel JM, Wasnich RD (1990) A critical review of bone mass and the risk of fractures in osteoporosis. Calcif Tissue Int 46:149–161

    Article  PubMed  CAS  Google Scholar 

  2. Cummings SR, Black DM, Nevitt MC, Browner W, Cauley J, Ensrud K, Genant HK, Palermo L, Scott J, Vogt TM (1993) Bone density at various sites for prediction of hip fractures. The Study of Osteoporotic Fractures Research Group. Lancet 341:72–75

    Article  PubMed  CAS  Google Scholar 

  3. Cummings SR, Karpf DB, Harris F, Genant HK, Ensrud K, LaCroix AZ, Black DM (2002) Improvement in spine bone density and reduction in risk of vertebral fractures during treatment with antiresorptive drugs. Am J Med 112:281–289

    Article  PubMed  CAS  Google Scholar 

  4. Hochberg MC, Greenspan S, Wasnich RD, Miller P, Thompson DE, Ross PD (2002) Changes in bone density and turnover explain the reductions in incidence of nonvertebral fractures that occur during treatment with antiresorptive agents. J Clin Endocrinol Metab 87:1586–1592

    Article  PubMed  CAS  Google Scholar 

  5. Parfitt AM (1992) Implications of architecture for the pathogenesis and prevention of vertebral fracture. Bone 13(Suppl 2):S41–S47

    Article  PubMed  Google Scholar 

  6. Kleerekoper M, Villanueva AR, Stanciu J, Rao DS, Parfitt AM (1985) The role of three-dimensional trabecular microstructure in the pathogenesis of vertebral compression fractures. Calcif Tissue Int 37:594–597

    Article  PubMed  CAS  Google Scholar 

  7. Dempster DW (2000) The contribution of trabecular architecture to cancellous bone quality. J Bone Miner Res 15:20–23

    Article  PubMed  CAS  Google Scholar 

  8. Majumdar S, Kothari M, Augat P, Newitt DC, Link TM, Lin JC, Lang T, Lu Y, Genant HK (1998) High-resolution magnetic resonance imaging: three-dimensional trabecular bone architecture and biomechanical properties. Bone 22:445–454

    Article  PubMed  CAS  Google Scholar 

  9. Lang T, Augat P, Majumdar S, Ouyang X, Genant HK (1998) Noninvasive assessment of bone density and structure using computed tomography and magnetic resonance. Bone 22:149S–153S

    Article  PubMed  CAS  Google Scholar 

  10. Wehrli FW, Saha PK, Gomberg BR, Song HK, Snyder PJ, Benito M, Wright A, Weening R (2002) Role of magnetic resonance for assessing structure and function of trabecular bone. Top Magn Reson Imaging 13:335–355

    Article  PubMed  Google Scholar 

  11. Link TM, Bauer J, Kollstedt A, Stumpf I, Hudelmaier M, Settles M, Majumdar S, Lochmuller EM, Eckstein F (2004) Trabecular bone structure of the distal radius, the calcaneus, and the spine: which site predicts fracture status of the spine best? Invest Radiol 39:487–497

    Article  PubMed  Google Scholar 

  12. Sell CA, Masi JN, Burghardt A, Newitt D, Link TM, Majumdar S (2005) Quantification of trabecular bone structure using magnetic resonance imaging at 3 tesla-calibration studies using microcomputed tomography as a standard of reference. Calcif Tissue Int

  13. Boutry N, Cortet B, Chappard D, Dubois P, Demondion X, Marchandise X, Cotten A (2004) Bone structure of the calcaneus: analysis with magnetic resonance imaging and correlation with histomorphometric study. Osteoporos Int 15:827–833

    Article  PubMed  Google Scholar 

  14. Link TM, Vieth V, Stehling C, Lotter A, Beer A, Newitt D, Majumdar S (2003) High-resolution MRI vs multislice spiral CT: which technique depicts the trabecular bone structure best? Eur Radiol 13:663–671

    PubMed  Google Scholar 

  15. Caligiuri P, Giger ML, Favus M (1994) Multifractal radiographic analysis of osteoporosis. Med Phys 21:503–508

    Article  PubMed  CAS  Google Scholar 

  16. Caligiuri P, Giger ML, Favus MJ, Jia H, Doi K, Dixon LB (1993) Computerized radiographic analysis of osteoporosis: preliminary evaluation. Radiology 186:471–474

    PubMed  CAS  Google Scholar 

  17. Chinander MR, Giger ML, Martell JM, Jiang C, Favus MJ (1999) Computerized radiographic texture measures for characterizing bone strength: a simulated clinical setup using femoral neck specimens. Med Phys 26:2295–2300

    Article  PubMed  CAS  Google Scholar 

  18. Jiang C, Giger ML, Chinander MR, Martell JM, Kwak S, Favus MJ (1999) Characterization of bone quality using computer-extracted radiographic features. Med Phys 26:872–879

    Article  PubMed  CAS  Google Scholar 

  19. Gregory JS, Stewart A, Undrill PE, Reid DM, Aspden RM (2004) Identification of hip fracture patients from radiographs using Fourier analysis of the trabecular structure: a cross-sectional study. BMC Med Imaging 4:4

    Article  PubMed  Google Scholar 

  20. Lin JC, Grampp S, Link T, Kothari M, Newitt DC, Felsenberg D, Majumdar S (1999) Fractal analysis of proximal femur radiographs: correlation with biomechanical properties and bone mineral density. Osteoporos Int 9:516–524

    PubMed  CAS  Google Scholar 

  21. Majumdar S, Link TM, Millard J, Lin JC, Augat P, Newitt D, Lane N, Genant HK (2000) In vivo assessment of trabecular bone structure using fractal analysis of distal radius radiographs. Med Phys 27:2594–2599

    Article  PubMed  CAS  Google Scholar 

  22. Benhamou CL, Poupon S, Lespessailles E, Loiseau S, Jennane R, Siroux V, Ohley W, Pothuaud L (2001) Fractal analysis of radiographic trabecular bone texture and bone mineral density: two complementary parameters related to osteoporotic fractures. J Bone Miner Res 16:697–704

    Article  PubMed  CAS  Google Scholar 

  23. Pothuaud L, Lespessailles E, Harba R, Jennane R, Royant V, Eynard E, Benhamou CL (1998) Fractal analysis of trabecular bone texture on radiographs: discriminant value in postmenopausal osteoporosis. Osteoporos Int 8:618–625

    Article  PubMed  CAS  Google Scholar 

  24. Chappard C, Brunet-Imbault B, Lemineur G, Giraudeau B, Basillais A, Harba R, Benhamou CL (2005) Anisotropy changes in post-menopausal osteoporosis: characterization by a new index applied to trabecular bone radiographic images. Oseoporos Int

  25. Lespessailles E, Roux JP, Benhamou CL, Arlot ME, Eynard E, Harba R, Padonou C, Meunier PJ (1998) Fractal analysis of bone texture on os calcis radiographs compared with trabecular microarchitecture analyzed by histomorphometry. Calcif Tissue Int 63:121–125

    Article  PubMed  CAS  Google Scholar 

  26. Lespessailles E, Jullien A, Eynard E, Harba R, Jacquet G, Ildefonse JP, Ohley W, Benhamou CL (1998) Biomechanical properties of human os calcanei: relationships with bone density and fractal evaluation of bone microarchitecture. J Biomech 31:817–824

    Article  PubMed  CAS  Google Scholar 

  27. Wilkie JR, Giger ML, Chinander MR, Vokes TJ, Nishikawa RM, Carlin MD (2004) Investigation of physical image quality indices of a bone densitometry system. Med Phys 31:873–881

    Article  PubMed  Google Scholar 

  28. Wilkie JR, Giger ML, Chinander MR, Vokes TJ, Li H, Dixon L, Jaros V (2004) Comparison of radiographic texture analysis from computed radiography and bone densitometry systems. Med Phys 31:882–891

    Article  PubMed  Google Scholar 

  29. Ross PD, Davis JW, Epstein RS, Wasnich RD (1991) Pre-existing fractures and bone mass predict vertebral fracture incidence in women. Ann Intern Med 114:919–923

    PubMed  CAS  Google Scholar 

  30. Kotowicz MA, Melton LJ 3rd, Cooper C, Atkinson EJ, O’Fallon WM, Riggs BL (1994) Risk of hip fracture in women with vertebral fracture. J Bone Miner Res 9:599–605

    Article  PubMed  CAS  Google Scholar 

  31. Black DM, Arden NK, Palermo L, Pearson J, Cummings SR (1999) Prevalent vertebral deformities predict hip fractures and new vertebral deformities but not wrist fractures. Study of osteoporotic fractures research group. J Bone Miner Res 14:821–828

    Article  PubMed  CAS  Google Scholar 

  32. Melton LJ 3rd, Atkinson EJ, Cooper C, O’Fallon WM, Riggs BL (1999) Vertebral fractures predict subsequent fractures. Osteoporos Int 10:214–221

    Article  PubMed  Google Scholar 

  33. Lindsay R, Silverman SL, Cooper C, Hanley DA, Barton I, Broy SB, Licata A, Benhamou L, Geusens P, Flowers K, Stracke H, Seeman E (2001) Risk of new vertebral fracture in the year following a fracture. JAMA 285:320–323

    Article  PubMed  CAS  Google Scholar 

  34. Delmas PD, Genant HK, Crans GG, Stock JL, Wong M, Siris E, Adachi JD (2003) Severity of prevalent vertebral fractures and the risk of subsequent vertebral and nonvertebral fractures: results from the MORE trial. Bone 33:522–532

    Article  PubMed  CAS  Google Scholar 

  35. Oleksik A, Ott SM, Vedi S, Bravenboer N, Compston J, Lips P (2000) Bone structure in patients with low bone mineral density with or without vertebral fractures. J Bone Miner Res 15:1368–1375

    Article  PubMed  CAS  Google Scholar 

  36. Wehrli FW, Hilaire L, Fernandez-Seara M, Gomberg BR, Song HK, Zemel B, Loh L, Snyder PJ (2002) Quantitative magnetic resonance imaging in the calcaneus and femur of women with varying degrees of osteopenia and vertebral deformity status. J Bone Miner Res 17:2265–2273

    Article  PubMed  Google Scholar 

  37. The Writing Group for the ISCD Position Development Conference (2004) Indications and reporting for dual-energy x-ray absorptiometry. J Clin Densitom 7:37–44

    Google Scholar 

  38. Vokes TJ, Gillen DL, Lovett J, Favus MJ (2005) Comparison of T-scores from different skeletal sites in differentiating postmenopausal women with and without prevalent vertebral fractures. J Clin Densitom 8:206–215

    Article  PubMed  Google Scholar 

  39. Vokes TJ, Dixon LB, Favus MJ (2003) Utility of lateral vertebral assessment (LVA) in diagnosing vertebral fractures in clinical practice. Submitted for publication to Osteoporosis International

  40. Genant HK, Wu CY, van Kuijk C, Nevitt MC (1993) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8:1137–1148

    PubMed  CAS  Google Scholar 

  41. Abdel-Hamid Osman A, Bassiouni H, Koutri R, Nijs J, Geusens P, Dequeker J (1994) Aging of the thoracic spine: distinction between wedging in osteoarthritis and fracture in osteoporosis-a cross-sectional and longitudinal study. Bone 15:437–442

    Article  PubMed  CAS  Google Scholar 

  42. Ziegler R, Scheidt-Nave C, Leidig-Bruckner G (1996) What is a vertebral fracture? Bone 18:169S–177S

    Article  PubMed  CAS  Google Scholar 

  43. Lin JC, Amling M, Newitt DC, Selby K, Srivastav SK, Delling G, Genant HK, Majumdar S (1998) Heterogeneity of trabecular bone structure in the calcaneus using magnetic resonance imaging. Osteoporos Int 8:16–24

    Article  PubMed  CAS  Google Scholar 

  44. Hosmer D, Lemeshow S (1989) Applied logistic regression. John Wiley & Sons, New York

    Google Scholar 

  45. Pregibon D (1981) Logistic regression diagnostics. Annals Statistics 9:705–724

    Google Scholar 

  46. DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845

    Article  PubMed  CAS  Google Scholar 

  47. Jones G, White C, Nguyen T, Sambrook PN, Kelly PJ, Eisman JA (1996) Prevalent vertebral deformities: relationship to bone mineral density and spinal osteophytosis in elderly men and women. Osteoporos Int 6:233–239

    Article  PubMed  CAS  Google Scholar 

  48. De Laet CE, Van Hout BA, Burger H, Weel AE, Hofman A, Pols HA (1998) Hip fracture prediction in elderly men and women: validation in the Rotterdam study. J Bone Miner Res 13:1587–1593

    Article  PubMed  Google Scholar 

  49. Kanis JA, Johnell O, Oden A, Jonsson B, De Laet C, Dawson A (2000) Risk of hip fracture according to the World Health Organization criteria for osteopenia and osteoporosis. Bone 27:585–590

    Article  PubMed  CAS  Google Scholar 

  50. Rea JA, Li J, Blake GM, Steiger P, Genant HK, Fogelman I (2000) Visual assessment of vertebral deformity by x-ray absorptiometry: a highly predictive method to exclude vertebral deformity. Osteoporos Int 11:660–668

    Article  PubMed  CAS  Google Scholar 

  51. Rea JA, Chen MB, Li J, Blake GM, Steiger P, Genant HK, Fogelman I (2000) Morphometric X-ray absorptiometry and morphometric radiography of the spine: a comparison of prevalent vertebral deformity identification. J Bone Miner Res 15:564–574

    Article  PubMed  CAS  Google Scholar 

  52. Ferrar L, Jiang G, Barrington NA, Eastell R (2000) Identification of vertebral deformities in women: comparison of radiological assessment and quantitative morphometry using morphometric radiography and morphometric X-ray absorptiometry. J Bone Miner Res 15:575–585

    Article  PubMed  CAS  Google Scholar 

  53. Genant HK, Li J, Wu CY, Shepherd JA (2000) Vertebral fractures in osteoporosis: a new method for clinical assessment. J Clin Densitom 3:281–290

    Article  PubMed  CAS  Google Scholar 

  54. Faciszewski T, McKiernan F (2002) Calling all vertebral fractures classification of vertebral compression fractures: a consensus for comparison of treatment and outcome. J Bone Miner Res 17:185–191

    Article  PubMed  Google Scholar 

  55. Harrell FE Jr, Lee KL, Matchar DB, Reichert TA (1985) Regression models for prognostic prediction: advantages, problems, and suggested solutions. Cancer Treat Rep 69:1071–1077

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the grants K23 AR048205–01A1, AR42739-S, and AR42739 from the National Institutes of Health. The authors want to thank Gina Keys, William Wilson, and Maureen Costello for performing bone densitometry; Anca Guiu, Deepti Singh, Jeanne Lovett, and Ann Pham for help with data management; and GE Medical Systems for providing the PIXI instrument equipped with a high-resolution camera.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. J. Vokes.

Additional information

Supported by grants AR42739-S1, AR42739, and K23 AR048205–01A1 from the National Institutes of Health.

Appendix

Appendix

Formulas used to calculate RTA features

The Fourier-based texture analysis features are given by the following formulas:

$$RMS = {\sqrt {{\sum\limits_m {{\sum\limits_n {{\left| {Fm,n} \right|}^{2} } }} }} }$$
$$FMP = \frac{{{\sum {_{m} } }{\sum {_{n} {\sqrt {m^{2} n^{2} } }{\left| {Fm,n} \right|}^{2} } }}} {{{\sum {_{m} } }{\sum {_{n} {\left| {Fm,n} \right|}^{2} } }}}$$

F m,n corresponds to the Fourier transform of the background corrected ROI of the trabecular pattern, and m and n are the indices of the ROI array.

Global Minkowski dimension, D[f], is computed for each ROI as given by

$${{D}}_{{{M}}} {\left[ {{f}} \right]} = {\mathop {\lim }\limits_{{\text{ $ \varepsilon $ }} \to 0} }\frac{{\log {\left[ {{{V}}_{{{g}}} {\left( {\text{ $ \varepsilon $ }} \right)}/{\text{ $ \varepsilon $ }}^{3} } \right]}}}{{\log {\left( {1/{\text{ $ \varepsilon $ }}} \right)}}},$$

where f corresponds to the ROI image data. For a structuring element g at scale ε, V g(ε) is the “volume” between two processed versions of f obtained using morphological operators.

The volume V g(ε) is computed by

$$V_{G} {\left( \varepsilon \right)} = {\sum\limits_{M = 0}^{64} {{\sum\limits_{N = 0}^{64} {{\left\{ {{\left( {F \oplus \varepsilon G} \right)} - {\left( {F \otimes \varepsilon G} \right)}} \right\}}} }} },$$

where \({\left( {F \oplus \varepsilon G} \right)}\) and \({\left( {F \otimes \varepsilon G} \right)}\) are the dilated version and the eroded version, respectively, of the image obtained using a structuring element g at scale ε. Finding the slope of the least-squares fitted line between log[V g(ε)/ε3] and log(1/ε) gives the estimated Minkowski fractal dimension.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vokes, T.J., Giger, M.L., Chinander, M.R. et al. Radiographic texture analysis of densitometer-generated calcaneus images differentiates postmenopausal women with and without fractures. Osteoporos Int 17, 1472–1482 (2006). https://doi.org/10.1007/s00198-006-0089-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-006-0089-y

Keywords

Navigation