Skip to main content
Log in

Shock-tube studies of Sarin surrogates

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

To further refine the existing high-temperature combustion chemistry mechanisms of Sarin surrogates or to develop new ones, the ignition delay times of mixtures containing various Sarin surrogates have been studied in the authors’ laboratory, namely dimethyl-methylphosphonate, diethyl-methylphosphonate (DEMP), and triethylphosphate, and the results are compared for the first time herein. They were each measured in a heated shock tube, with the DEMP-related ignition delay times being the new data reported in this paper. The Sarin surrogates were studied in neat mixtures with oxygen or seeded to baseline mixtures of hydrogen or methane at around 1.5 atm. Noticeable differences were observed between the ignition delay times of the three simulants, whether sole or mixed with a fuel. Comparisons of OH* time histories obtained from each surrogate highlight the similarities and differences in chemical structure among the different compounds. In mixtures with oxygen and Ar, the three surrogates present similar ignition delay times below 1380 K, whereas the ignition delay time results rapidly diverge above this temperature. When the surrogates were added into \(\hbox {H}_{2}/\hbox {O}_{2}\) or \(\hbox {CH}_{4}/\hbox {O}_{2}\) mixtures, large changes in the reactivity of the mixtures were observed. These changes in reactivity are however dependent on the surrogate, for each fuel investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Glaude, P.A., Curran, H.J., Pitz, W.J., Westbrook, C.K.: Kinetic study of the combustion of organophosphorus compounds. Proc. Combust. Inst. 28, 1749–1756 (2000). https://doi.org/10.1016/S0082-0784(00)80576-7

    Article  Google Scholar 

  2. Glaude, P.A., Melius, C., Pitz, W.J., Westbrook, C.K.: Detailed chemical kinetic reaction mechanisms for incineration of organophosphorus and fluoroorganophosphorus compounds. Proc. Combust. Inst. 29, 2469–2476 (2002). https://doi.org/10.1016/S1540-7489(02)80301-7

    Article  Google Scholar 

  3. MacDonald, M.A., Jayaweera, T.M., Fisher, E.M., Gouldin, F.C.: Variation of chemically active and inert flame-suppression effectiveness with stoichiometric mixture fraction. Proc. Combust. Inst. 27, 2749–2756 (1998). https://doi.org/10.1016/S0082-0784(98)80131-8

    Article  Google Scholar 

  4. Werner, J.H., Cool, T.A.: Kinetic model for the decomposition of DMMP in a hydrogen/oxygen flame. Combust. Flame 117, 78–98 (1999). https://doi.org/10.1016/S0010-2180(98)00101-1

    Article  Google Scholar 

  5. Korobeinichev, O.P., Ilyin, S.B., Shvartsberg, V.M., Chernov, A.A.: The destruction chemistry of organophosphorus compounds in flames—I: quantitative determination of final phosphorus containing species in hydrogen–oxygen flames. Combust. Flame 118, 718–726 (1999). https://doi.org/10.1016/S0010-2180(99)00030-9

    Article  Google Scholar 

  6. Korobeinichev, O.P., Ilyin, S.B., Bolshova, T.A., Shvartsberg, V.M., Chernov, A.A.: The chemistry of the destruction of organophosphorus compounds in flames—III: the destruction of DMMP and TMP in a flame of hydrogen and oxygen. Combust. Flame 121, 593–609 (2000). https://doi.org/10.1016/S0010-2180(99)00171-6

    Article  Google Scholar 

  7. MacDonald, M.A., Gouldin, F.C., Fisher, E.M.: Temperature dependence of phosphorus-based flame inhibition. Combust. Flame 124, 668–683 (2001). https://doi.org/10.1016/S0010-2180(00)00236-4

    Article  Google Scholar 

  8. Korobeinichev, O.P., Bolshova, T.A., Shvartsberg, V.M., Chernov, A.A.: Inhibition and promotion of combustion by organophosphorus compounds added to flames of \(\text{ CH }_{4}\) or \(\text{ H }_{2}\) in \(\text{ O }_{2}\) and Ar. Combust. Flame 125, 744–751 (2001). https://doi.org/10.1016/S0010-2180(00)00232-7

    Article  Google Scholar 

  9. Nogueira, M.F.M., Fisher, E.M.: Effects of dimethyl methylphosphonate on premixed methane flames. Combust. Flame 132, 352–363 (2003). https://doi.org/10.1016/S0010-2180(02)00464-9

    Article  Google Scholar 

  10. Siow, J.E., Laurendeau, N.M.: Flame inhibition activity of phosphorus-containing compounds using laser-induced fluorescence measurements of hydroxyl. Combust. Flame 136(136), 16–24 (2004). https://doi.org/10.1016/j.combustflame.2003.08.010

    Article  Google Scholar 

  11. Shmakov, A.G., Korobeinichev, O.P., Shvartsberg, V.M., Knyazkov, D.A., Bolshova, T.A., Rybitskaya, I.V.: Inhibition of premixed and nonpremixed flames with phosphorus-containing compounds. Proc. Combust. Inst. 30, 2345–2352 (2005). https://doi.org/10.1016/j.proci.2004.07.003

    Article  Google Scholar 

  12. Korobeinichev, O.P., Shvartsberg, V.M., Shmakov, A.G., Bolshova, T.A., Jayaweera, T.M., Melius, C.F., Pitz, W.J., Westbrook, C.K., Curran, H.J.: Flame inhibition by phosphorus containing compounds in lean and rich propane flames. Proc. Combust. Inst. 30, 2353–2360 (2005). https://doi.org/10.1016/j.proci.2004.08.095

    Article  Google Scholar 

  13. Jayaweera, T.M., Melius, C.F., Pitz, W.J., Westbrook, C.K., Korobeinichev, O.P., Shvartsberg, V.M., Shmakov, A.G., Rybitskaya, I.V., Curran, H.J.: Flame inhibition by phosphorus-containing compounds over a range of equivalence ratios. Combust. Flame 140, 103–115 (2005). https://doi.org/10.1016/j.combustflame.2004.11.001

    Article  Google Scholar 

  14. Jayaweera, T.M., Fisher, E.M., Fleming, J.W.: Flame suppression by aerosols derived from aqueous solutions containing phosphorus. Combust. Flame 141, 308–321 (2005). https://doi.org/10.1016/j.combustflame.2004.10.013

    Article  Google Scholar 

  15. Mathieu, O., Kulatilaka, W.D., Petersen, E.L.: Experimental and modeling study on the effects of dimethyl methylphosphonate (DMMP) addition on \(\text{ H }_{2}\), \(\text{ CH }_{4}\), and \(\text{ C }_{2}\text{ H }_{4}\) ignition. Combust. Flame 191, 320–334 (2018). https://doi.org/10.1016/j.combustflame.2018.01.020

    Article  Google Scholar 

  16. Mathieu, O., Kulatilaka, W.D., Petersen, E.L.: Studies, Shock-Tube, of Tri-Ethyl-Phosphate (TEP) Kinetics at High Temperatures, AIAA Paper 2017-795, AIAA Scitech, 9–13 (January 2017), Grapevinem, TX, USA. https://doi.org/10.2514/6.2017-1795

  17. Mathieu, O., Goulier, J., Gourmel, F., Mannan, M.S., Chaumeix, N., Petersen, E.L.: Experimental study of the effect of \(\text{ CF }_{3}\text{ I }\) addition on the ignition delay time and laminar flame speed of methane, ethylene, and propane. Proc. Combust. Inst. 35, 2731–2739 (2015). https://doi.org/10.1016/j.proci.2014.05.096

    Article  Google Scholar 

  18. Mathieu, O., Keesee, C., Gregoire, C., Petersen, E.L.: Experimental and chemical kinetics study of the effects of halon 1211 (\(\text{ CF }_{2}\text{ BrCl }\)) on the laminar flame speed and ignition of light hydrocarbons. J. Phys. Chem. A 119, 7611–7626 (2015). https://doi.org/10.1021/acs.jpca.5b00959

    Article  Google Scholar 

  19. Babushok, V., Noto, T., Burgess, D., Hamins, A., Tsang, W.: Influence of \(\text{ CF }_{3}\text{ I }\), \(\text{ CF }_{3}\text{ Br }\), and \(\text{ CF }_{3}\text{ H }\) on the high-temperature combustion of methane. Combust. Flame 107, 351–367 (1996). https://doi.org/10.1016/S0010-2180(96)00052-1

  20. Krejci, M.C., Mathieu, O., Vissotski, A.J., Ravi, S., Sikes, T.G., Petersen, E.L., Kéromnès, A., Metcalfe, W., Curran, H.J.: Laminar flame speed and ignition delay time data for the kinetic modeling of hydrogen and syngas fuel blends. J. Eng. Gas Turbines Power 135, 021503-1–021503-9 (2013). https://doi.org/10.1115/1.4007737

    Article  Google Scholar 

  21. Kéromnès, A., Metcalfe, W.K., Heufer, K.A., Donohoe, N., Das, A.K., Sung, C.-J., Herzler, J., Naumann, C., Griebel, P., Mathieu, O., Krejci, M.C., Petersen, E.L., Pitz, W.J., Curran, H.J.: An experimental and detailed chemical kinetic modeling study of hydrogen and syngas mixture oxidation at elevated pressures. Combust. Flame 160, 995–1011 (2013). https://doi.org/10.1016/j.combustflame.2013.01.001

    Article  Google Scholar 

  22. Butrow, A.B., Buchanan, J.H., Tevault, D.E.: Vapor pressure of organophosphorus nerve agent simulant compounds. J. Chem. Eng. Data 54, 1876–1883 (2009). https://doi.org/10.1021/je8010024

    Article  Google Scholar 

  23. Rotavera, B., Petersen, E.L.: Model predictions of higher-order normal alkane ignition from dilute shock-tube experiments. Shock Waves 23, 345–359 (2013). https://doi.org/10.1007/s00193-012-0387-6

    Article  Google Scholar 

  24. Babushok, V.I., Linteris, G.T., Katta, V.R., Takahashi, F.: Influence of hydrocarbon moiety of DMMP on flame propagation in lean mixtures. Combust. Flame 171, 168–172 (2016). https://doi.org/10.1016/j.combustflame.2016.06.019

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Defense Threat Reduction Agency (DTRA), Grant Number HDTRA1-16-1-0031.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Mathieu.

Additional information

Communicated by A. Higgins.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 24 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathieu, O., Kulatilaka, W.D. & Petersen, E.L. Shock-tube studies of Sarin surrogates. Shock Waves 29, 441–449 (2019). https://doi.org/10.1007/s00193-018-0841-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-018-0841-1

Keywords

Navigation