Skip to main content
Log in

Non-uniform ignition behind a reflected shock and its influence on ignition delay measured in a shock tube

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Accurate measurement of ignition delay in a shock tube is extremely important for developing chemical mechanisms of different fuels. In ideal shock-tube experiments, the test gas behind the reflected shock is expected to ignite uniformly. However, in practical shock-tube experiments, non-uniform ignition occurs due to different factors such as boundary layer growth and boundary layer–reflected shock interaction. Such non-uniform ignition greatly complicates the interpretation of measurements and affects the accuracy of ignition delay measurement. Even without boundary layer and multi-dimensional effects, non-uniform ignition can still happen since the reflected shock itself can induce the spatial gradient of ignition delay. This was first studied numerically by Melguizo-Gavilanes and Bauwens (Shock Waves 23(3):221–231, 2013) using a simplified three-step chemical mechanism. They found that non-uniform ignition can greatly affect the determination of ignition delay in a shock tube. As an extension of Melguizo-Gavilanes and Bauwens’ work, in the present study we conduct simulations considering detailed chemistry for two fuels, hydrogen and n-heptane, without and with low-temperature chemistry. Moreover, the detonation development for different mixtures is interpreted through comparing the local sound speed and reaction front propagation speed. The ignition delay recorded at different positions away from the end wall is compared to that in a homogeneous system. A large deviation in ignition delay is observed. The deviation is shown to change linearly with the distance away from the end wall, and a correlation is proposed to accurately describe such deviations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Hanson, R.K., Davidson, D.F.: Recent advances in laser absorption and shock tube methods for studies of combustion chemistry. Prog. Energy Combust. Sci. 44(5), 103–114 (2014). https://doi.org/10.1016/j.pecs.2014.05.001

    Article  Google Scholar 

  2. Grogan, K.P., Ihme, M.: Weak and strong ignition of hydrogen/oxygen mixtures in shock-tube systems. Proc. Combust. Inst. 35(2), 2181–2189 (2015). https://doi.org/10.1016/j.proci.2014.07.074

    Article  Google Scholar 

  3. Uygun, Y., Ishihara, S., Olivier, H.: A high pressure ignition delay time study of 2-methylfuran and tetrahydrofuran in shock tubes. Combust. Flame 161(10), 2519–2530 (2014). https://doi.org/10.1016/j.combustflame.2014.04.004

    Article  Google Scholar 

  4. Strehlow, R.A., Cohen, A.: Initiation of detonation. J. Phys. Fluids 5(1), 97–101 (1962). https://doi.org/10.1063/1.1706497

    Article  Google Scholar 

  5. Gilbert, R.B., Strehlow, R.A.: Theory of detonation initiation behind reflected shock waves. AIAA 4(10), 1777–1783 (1966). https://doi.org/10.2514/3.3777

    Article  Google Scholar 

  6. Voevodsky, V.V., Soloukhin, R.I.: On the mechanism and explosion limits of hydrogen-oxygen chain self-ignition in shock waves. Symp. (Int.) Combust. 10(1), 279–283 (1965). https://doi.org/10.1016/S0082-0784(65)80173-4

    Article  Google Scholar 

  7. Meyer, J.W., Oppenheim, A.K.: On the shock-induced ignition of explosive gases. Symp. (Int.) Combust. 13(1), 1153–1164 (1971). https://doi.org/10.1016/S0082-0784(71)80112-1

    Article  Google Scholar 

  8. Oran, E.S., Young, T.R., Boris, J.P., Cohen, A.: Weak and strong ignition. I. Numerical simulations of shock tube experiments. Combust. Flame 48(2), 135–148 (1982). https://doi.org/10.1016/0010-2180(82)90123-7

    Article  Google Scholar 

  9. Oran, E.S., Boris, J.P.: Weak and strong ignition. II. Sensitivity of the hydrogen/oxygen system. Combust. Flame 48(82), 149–161 (1982). https://doi.org/10.1016/0010-2180(82)90124-9

    Article  Google Scholar 

  10. Yamashita, H., Kasahara, J., Sugiyama, Y., Matsuo, A.: Visualization study of ignition modes behind bifurcated-reflected shock waves. Combust. Flame 159(9), 2954–2966 (2012). https://doi.org/10.1016/j.combustflame.2012.05.009

    Article  Google Scholar 

  11. Javed, T., Badra, J., Jaasim, M., Es-Sebbar, E., Labastida, M.F., Chung, S.H., Im, H.G., Farooq, A.: Shock tube ignition delay data affected by localized ignition phenomena. Combust. Sci. Technol. 189(7), 1138–1161 (2017). https://doi.org/10.1080/00102202.2016.1272599

    Article  Google Scholar 

  12. Ninnemann, E., Koroglu, B., Pryor, O., Barak, S., Nash, L., Loparo, Z., Sosa, J., Ahmed, K., Vasu, S.: New insights into the shock tube ignition of H2/O2 at low to moderate temperatures using high-speed end-wall imaging. Combust. Flame 187, 11–21 (2018). https://doi.org/10.1016/j.combustflame.2017.08.021

    Article  Google Scholar 

  13. Tulgestke, A.M., Johnson, S.E., Davidson, D.F., Hanson, R.K.: High-speed imaging of inhomogeneous ignition in a shock tube. Shock Waves 28, 1089–1095 (2018). https://doi.org/10.1007/s00193-018-0824-2

    Article  Google Scholar 

  14. Zeldovich, Y.B.: Regime classification of an exothermic reaction with nonuniform initial conditions. Combust. Flame 39(2), 211–214 (1980). https://doi.org/10.1016/0010-2180(80)90017-6

    Article  Google Scholar 

  15. Lee, J.H.S., Knystautas, R., Yoshikawa, N.: Photochemical initiation of gaseous detonations. AIAA 5(11), 971–982 (1978). https://doi.org/10.1016/0094-5765(78)90003-6

    Article  Google Scholar 

  16. Chaumeix, N., Imbert, B., Catoire, L., Paillard, C.E.: The onset of detonation behind shock waves of moderate intensity in gas phase. Combust. Sci. Technol. 186(4–5), 607–620 (2014). https://doi.org/10.1080/00102202.2014.883259

    Article  Google Scholar 

  17. Melguizo-Gavilanes, J., Bauwens, L.: A comparison between constant volume induction times and results from spatially resolved simulation of ignition behind reflected shocks: implications for shock tube experiments. Shock Waves 23(3), 221–231 (2013). https://doi.org/10.1007/s00193-012-0403-x

    Article  Google Scholar 

  18. Grogan, K.P., Ihme, M.: Regimes describing shock boundary layer interaction and ignition in shock tubes. Proc. Combust. Inst. 36(2), 2927–2935 (2017). https://doi.org/10.1016/j.proci.2016.06.078

    Article  Google Scholar 

  19. Lee, C.B., Wu, J.Z.: Transition in wall-bounded flows. Appl. Mech. Rev. 61(3), 030802 (2008). https://doi.org/10.1115/1.2909605

    Article  MATH  Google Scholar 

  20. Chen, Z., Burke, M.P., Ju, Y.: Effects of Lewis number and ignition energy on the determination of laminar flame speed using propagating spherical flames. Proc. Combust. Inst. 32(1), 1253–1260 (2009). https://doi.org/10.1016/j.proci.2008.05.060

    Article  Google Scholar 

  21. Chen, Z.: Effects of radiation and compression on propagating spherical flames of methane/air mixtures near the lean flammability limit. Combust. Flame 157(12), 2267–2276 (2010). https://doi.org/10.1016/j.combustflame.2010.07.010

    Article  Google Scholar 

  22. Dai, P., Chen, Z.: Supersonic reaction front propagation initiated by a hot spot in n-heptane/air mixture with multistage ignition. Combust. Flame 162(11), 4183–4193 (2015). https://doi.org/10.1016/j.combustflame.2015.08.002

    Article  Google Scholar 

  23. Kee, R., Rupley, F., Miller, J.: A Fortran program for modeling steady laminar one-dimensional premixed flames. Sandia National Laboratory Report SAND89-8009B (1989)

  24. Kee, R., Grcar, J., Smooke, M., Miller, J.: CHEMKIN-II: a Fortran package for the analysis of gas-phase chemical kinetics. Sandia National Laboratory Report SAND85-8240 (1985)

  25. Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5(3), 506–517 (1968). https://doi.org/10.1137/0705041

    Article  MathSciNet  MATH  Google Scholar 

  26. Toro, E.F.: Riemann solvers and numerical methods for fluid dynamics, 2nd edn. Springer, Berlin (1999). https://doi.org/10.1007/978-3-662-03915-1

    Book  MATH  Google Scholar 

  27. Bussing, T.R.A., Murman, E.M.: Finite-volume method for the calculation of compressible chemically reacting flows. AIAA 26(9), 1070–1078 (1985). https://doi.org/10.2514/3.10013

    Article  MathSciNet  MATH  Google Scholar 

  28. Chen, Z.: On the accuracy of laminar flame speeds measured from outwardly propagating spherical flames: methane/air at normal temperature and pressure. Combust. Flame 162(6), 2442–2453 (2015). https://doi.org/10.1016/j.combustflame.2015.02.012

    Article  Google Scholar 

  29. Yu, H., Chen, Z.: End-gas autoignition and detonation development in a closed chamber. Combust. Flame 162(11), 4102–4111 (2015). https://doi.org/10.1016/j.combustflame.2015.08.018

    Article  Google Scholar 

  30. Qi, C., Chen, Z.: Effects of temperature perturbation on direct detonation initiation. Proc. Combust. Inst. 36(2), 2743–2751 (2017). https://doi.org/10.1016/j.proci.2016.06.093

    Article  Google Scholar 

  31. Yu, H., Qi, C., Chen, Z.: Effects of flame propagation speed and chamber size on end-gas autoignition. Proc. Combust. Inst. 36(3), 3533–3541 (2017). https://doi.org/10.1016/j.proci.2016.07.123

    Article  Google Scholar 

  32. Faghih, M., Han, W., Chen, Z.: Effects of Soret diffusion on premixed flame propagation under engine-relevant conditions. Combust. Flame 194, 175–179 (2018). https://doi.org/10.1016/j.combustflame.2018.04.031

    Article  Google Scholar 

  33. Zhang, W., Faqih, M., Gou, X., Chen, Z.: Numerical study on the transient evolution of a premixed cool flame. Combust. Flame 187, 129–136 (2018). https://doi.org/10.1016/j.combustflame.2017.09.009

    Article  Google Scholar 

  34. Li, J., Zhao, Z., Andrei, K., Dryer, F.L.: An updated comprehensive kinetic model of hydrogen combustion. Int. J. Chem. Kinet. 36(10), 566–575 (2004). https://doi.org/10.1002/kin.20026

    Article  Google Scholar 

  35. Liu, S., Hewson, J.C., Chen, J.H., Pitsch, H.: Effects of strain rate on high-pressure nonpremixed n-heptane autoignition in counterflow. Combust. Flame 137(3), 320–339 (2004). https://doi.org/10.1016/j.combustflame.2004.01.011

    Article  Google Scholar 

  36. Sharpe, G.J., Short, M.: Ignition of thermally sensitive explosives between a contact surface and a shock. J. Phys. Fluids 19(12), 126102 (2007). https://doi.org/10.1063/1.2821909

    Article  MATH  Google Scholar 

  37. Basevich, V.Y., Lidskii, B.V., Frolov, S.M.: Mechanisms of the amplification of a shock wave passing through a cool flame zone. Russ. J. Phys. Chem. B 4(1), 101–109 (2010). https://doi.org/10.1134/S1990793110010161

    Article  Google Scholar 

  38. Gu, X.J., Emerson, D.R., Bradley, D.: Modes of reaction front propagation from hot spots. Combust. Flame 133(1–2), 63–74 (2003). https://doi.org/10.1016/s0010-2180(02)00541-2

    Article  Google Scholar 

  39. Liepmann, H.W., Roshko, A.: Elements of Gasdynamics. Dover Publications, NY (2002)

    MATH  Google Scholar 

  40. Zhao, Z.L., Chen, Z., Chen, S.Y.: Correlations for the ignition delay times of hydrogen/air mixtures. Chin. Sci. Bull. 56(2), 215–221 (2011). https://doi.org/10.1007/s11434-010-4345-3

    Article  Google Scholar 

  41. Petersen, E.L., Davidson, D.F., Hanson, R.K.: Ignition delay times of ram accelerator CH4/O2/diluent mixtures. J. Propuls. Power 15(1), 82–91 (1999). https://doi.org/10.2514/2.5394

    Article  Google Scholar 

  42. Petersen, E.L.: Interpreting endwall and sidewall measurements in shock-tube ignition studies. Combust. Sci. Technol. 181(9), 1123–1144 (2009). https://doi.org/10.1080/00102200902973323

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 91741126 and 91541204). We appreciate helpful discussion with Shengkai Wang at Stanford University and Yuan Wang at Peking University. Part of the simulation was conducted on the High Performance Computing Platform of the Center for Life Science. We thank the editor for improving the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Chen.

Additional information

Communicated by A. Higgins.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, C., Qi, C. & Chen, Z. Non-uniform ignition behind a reflected shock and its influence on ignition delay measured in a shock tube. Shock Waves 29, 957–967 (2019). https://doi.org/10.1007/s00193-018-00889-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-018-00889-6

Keywords

Navigation