Skip to main content
Log in

Spherical integral transforms of second-order gravitational tensor components onto third-order gravitational tensor components

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

New spherical integral formulas between components of the second- and third-order gravitational tensors are formulated in this article. First, we review the nomenclature and basic properties of the second- and third-order gravitational tensors. Initial points of mathematical derivations, i.e., the second- and third-order differential operators defined in the spherical local North-oriented reference frame and the analytical solutions of the gradiometric boundary-value problem, are also summarized. Secondly, we apply the third-order differential operators to the analytical solutions of the gradiometric boundary-value problem which gives 30 new integral formulas transforming (1) vertical-vertical, (2) vertical-horizontal and (3) horizontal-horizontal second-order gravitational tensor components onto their third-order counterparts. Using spherical polar coordinates related sub-integral kernels can efficiently be decomposed into azimuthal and isotropic parts. Both spectral and closed forms of the isotropic kernels are provided and their limits are investigated. Thirdly, numerical experiments are performed to test the consistency of the new integral transforms and to investigate properties of the sub-integral kernels. The new mathematical apparatus is valid for any harmonic potential field and may be exploited, e.g., when gravitational/magnetic second- and third-order tensor components become available in the future. The new integral formulas also extend the well-known Meissl diagram and enrich the theoretical apparatus of geodesy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abramowitz M, Stegun IA (1972) Handbook of mathematical functions with formulas, graphs, and mathematical tables. Tenth Printing, National Bureau of Standards, Department of Commerce, Washington DC, USA, p 1046

  • Ardalan AA, Grafarend EW (2004) High-resolution regional geoid computation without applying Stokes’s formula: a case study of the Iranian geoid. J Geodesy 78:138–156

    Google Scholar 

  • Arfken GB, Weber HJ (2005) Mathematical methods for physicists, 6th edn. Elsevier Academic Press, New York, p 1182

    Google Scholar 

  • Balakin AB, Daishev RA, Murzakhanov ZG, Skochilov AF (1997) Laser-interferometric detector of the first, second and third derivatives of the potential of the Earth gravitational field. Izvestiya vysshikh uchebnykh zavedenii, seriya Geologiya i Razvedka 1:101–107

    Google Scholar 

  • Bell RE, Anderson RN, Pratson LF (1997) Gravity gradiometry resurfaces. Lead Edge 16:55–60

    Article  Google Scholar 

  • Bölling C, Grafarend EW (2005) Ellipsoidal spectral properties of the Earth’s gravitational potential and its first and second derivatives. J Geodesy 79:300–330

    Article  Google Scholar 

  • Brieden P, Müller J, Flury J, Heinzel G (2010) The mission OPTIMA -novelties and benefit. Geotechnologien, Science Report no. 17, Potsdam, Germany, pp. 134–139

  • Chauvenet W (1875) A treatise on plane and spherical trigonometry, 9th edn. JB Lippincott & Co., Philadelphia, p 270

    Google Scholar 

  • DiFrancesco D, Meyer TJ, Christensen A, FitzGerald D (2009) Gravity gradiometry—today and tomorrow. In: 11th SAGA Biennial Technical Meeting and Exhibition, September 13–18, 2009. Swaziland, South Africa, pp 80–83

  • Denker H (2003) Computation of gravity gradients for Europe for calibration/validation of GOCE data. In: Tziavos IN (ed) Gravity and Geoid 2002, 3rd Meeting of the International Gravity and Geoid Commission, August 26–30 2002. Thessaloniki, Greece, Ziti Publishing, Thessaloniki, Greece, pp 287–292

  • Douch K, Panet I, Pajot-Métivier G, Christophe B, Foulon B, Lequentrec-Lalancette M-F, Diament M (2015) Error analysis of a new planar electrostatic gravity gradiometer for airborne surveys. J Geodesy 89:1217–1231

    Article  Google Scholar 

  • Dransfield M (2007) Airborne gravity gradiometry in the search for mineral deposits. In: Milkereit B (ed) Proceedings of Exploration 07: Fifth Decennial International Conference on Mineral Exploration, September 9–12, 2007. Canada, Toronto, pp 341–354

  • Eötvös L (1896) Untersuchungen über gravitation und erdmagnetismus. Annalen der Physik und Chemie, Neue Folge 59:354–400

    Article  Google Scholar 

  • ESA (1999) Gravity field and steady-state ocean circulation mission. In: Reports for mission selection, ESA SP-1233(1)—the four candidate earth explorer core missions, ESA Publication Division, ESTEC, Noordwijk, The Netherlands, p 217

  • Eshagh M (2008) Non-singular expressions for the vector and the gradient tensor of gravitation in a geocentric spherical frame. Comput Geosci 34:1762–1768

    Article  Google Scholar 

  • Eshagh M (2011a) On integral approach to regional gravity field modelling from satellite gradiometric data. Acta Geophys 59:29–54

  • Eshagh M (2011b) The effect of spatial truncation error on the integral inversion of satellite gravity gradiometry data. Adv Space Res 45:1238–1247

    Article  Google Scholar 

  • Eshagh M, Ghorbannia M (2013) The use of Gaussian equations of motions of a satellite for local gravity anomaly recovery. Adv Space Res 52:30–38

    Article  Google Scholar 

  • Eshagh M, Šprlák M (2016) On the integral inversion of satellite-to-satellite velocity differences for local gravity field recovery: a theoretical study. Celest Mech Dyn Astron 124:127–144

    Article  Google Scholar 

  • Fixler JB (2003) Atom interferometer-based gravity gradiometer measurements. Doctoral Thesis, Faculty of Graduate School, Yale University, New Haven, Connecticut, USA, p 138

  • Garcia RV (2002) Local geoid determination from GRACE mission. Report No. 460, Department of Civil and Environmental Engineering and Geodetic Science, The Ohio State University, Columbus, Ohio, USA, p 106

  • Ghobadi-Far K, Sharifi MA, Sneeuw N (2016) 2D Fourier series representation of gravitational functionals in spherical coordinates. J Geodesy 90:871–881

    Article  Google Scholar 

  • Grafarend EW (2001) The spherical horizontal and spherical vertical boundary value problem—vertical deflections and geoid undulations - the completed Meissl diagram. J Geodesy 75:363–390

    Article  Google Scholar 

  • Grafarend EW, Heck B, Knickmeyer EH (1985) The free versus fixed geodetic boundary value problem for different combinations of geodetic observables. Bull Géodésique 59:11–32

    Article  Google Scholar 

  • Haagmans R, de Min E, van Gelderen M (1993) Fast evaluation of convolution integral on the sphere using 1D-FFT and a comparison with existing methods for Stokes integral. Manuscr Geod 18:227–241

    Google Scholar 

  • Heck B (1979) Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten. Deutsche Geodätische Kommission, Reihe C, Nr. 259, München, Germany

  • Heiskanen WA, Moritz H (1967) Physical geodesy. Freeman and Co., San Francisco, USA, p 364

  • Hotine M (1969) Mathematical geodesy. Environmental science services administration, monograph no. 2, US Department of Commerce, Washington DC, USA, p 416

  • Huang J, Vaníček P, Novák P (2000) An alternative algorithm to FFT for the numerical evaluation of Stokes’s integral. Stud Geophys Geod 44:374–380

    Article  Google Scholar 

  • Jekeli C (1988) The gravity gradiometer survey system (GGSS). Eos Trans Am Geophys Union 69:105–117

    Google Scholar 

  • Jekeli C (1993) A review of gravity gradiometer survey system data analyses. Geophysics 58:508–514

    Article  Google Scholar 

  • Jekeli C (2007) Potential theory and static gravity field of the Earth. In: Schubert G (ed) Treatise on geophysics, vol 3. Elsevier, Oxford, pp 11–42

    Chapter  Google Scholar 

  • Kellogg OD (1929) Foundations of potential theory. Verlag von Julius Springer, Berlin 384 p

    Book  Google Scholar 

  • Kern M, Haagmans R (2005) Determination of gravity gradients from terrestrial gravity data for calibration and validation of gradiometric data. In: Jekeli C, Bastos L, Fernandes L (eds) Gravity, geoid and space missions, IAG symposia series, vol 129. Springer-Verlag, Berlin, pp 95–100

    Chapter  Google Scholar 

  • Klopping FJ, Billson RM, Niebauer TM (2014) Interferometric differential gradiometer apparatus and method. United States Patent, Patent no. US 20140026654 A1, Washington DC, USA

  • Koch KR (1971) Die geodätische Randwertaufgabe bei bekannter Erdoberfläche. Zeitschrift für Vermessungswesen 96:218–224

    Google Scholar 

  • Lelgemann D (1976) On the recovery of gravity anomalies from high precision altimeter data. Report No. 239, Department of Geodetic Science and Surveying, The Ohio State University, Columbus, Ohio, USA, p 52

  • Li J (2002) A formula for computing the gravity disturbance from the second radial derivative of the disturbing potential. J Geodesy 76:226–231

    Article  Google Scholar 

  • Li J (2005) Integral formulas for computing the disturbing potential, gravity anomaly and the deflection of the vertical from the second-order radial gradient of the disturbing potential. J Geodesy 79:64–70

    Article  Google Scholar 

  • Luying C, Houze X (2006) General inverse of Stokes, Vening-Meinesz and Molodensky formulae. Sci China Ser D Earth Sci 49:499–504

    Article  Google Scholar 

  • Martinec Z (2003) Green’s function solution to spherical gradiometric boundary-value problems. J Geodesy 77:41–49

    Article  Google Scholar 

  • McGuirk JM, Foster GT, Fixler JB, Snadden MJ, Kasevich MA (2002) Sensitive absolute-gravity gradiometry using atom interferometry. Phys Rev A 65:033608, p 13

  • Meissl P (1971) A study of covariance functions related to the Earth’s disturbing potential. Report No. 151, Department of Geodetic Science, The Ohio State University, Columbus, Ohio, USA, p 86

  • Meyer TJ (2013) Gravity sensing instrument. United States Patent, Patent no. US 8359920 B2, Washington DC, USA

  • Molodensky MS, Eremeev VF, Yurkina MI (1962) Methods for study of the external gravitational field and figure of the Earth. The Israel Program for Scientific Translations, Department of Commerce, Washington DC, USA, p 248

  • Moritz H (1967) Kinematical geodesy. Report no. 92, Department of Geodetic Science, Ohio State University, Columbus, Ohio, USA, p 65

  • Moritz H (1989) Advanced physical geodesy, 2nd edn. Herbert Wichmann Verlag, Karlsruhe 500 p

    Google Scholar 

  • Moritz H (2000) Geodetic reference system 1980. J Geodesy 74:128–133

    Article  Google Scholar 

  • Novák P (2007) Integral inversion of SST data of type GRACE. Stud Geophys Geod 51:351–367

    Article  Google Scholar 

  • Novák P, Austen G, Sharifi MA, Grafarend EW (2006) Mapping Earth’s gravitation using GRACE data. In: Flury J, Rummel R, Reigber C, Rothacher M, Boedecker G, Schreiber U (eds) Observation of the earth system from space. Springer-Verlag, Berlin Heidelberg, pp 149–164

    Chapter  Google Scholar 

  • Pavlis  NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J Geophys Res (Solid Earth) 117:B04406, p 38

  • Petrovskaya MS, Zielinski JB (1997) Determination of the global and regional gravitational fields from satellite and balloon gradiometry missions. Adv Space Res 19:1723–1728

    Article  Google Scholar 

  • Pick M, Pícha J, Vyskočil V (1973) Theory of the Earth’s gravity field. Elsevier, Amsterdam 538 p

    Google Scholar 

  • Pizzetti P (1911) Sopra il calcolo teorico delle deviazioni del geoide dall’ ellissoide. Atti della Reale Accademia della Scienze di Torino 46:331–350

    Google Scholar 

  • Reed GB (1973) Application of kinematical geodesy for determining the short wavelength components of the gravity field by satellite gradiometry. Report No. 201, Ohio State University, Department of Geodetic Sciences, Columbus, USA, p 164

  • Rothleitner C (2013) Interferometric differential free-fall gradiometer. United States Patent, Patent no. US 20130205894 A1, Washington DC, USA

  • Rothleitner C, Francis O (2014) Measuring the Newtonian constant of gravitation with a differential free-fall gradiometer: a feasibility study. Rev Sci Instrum 85: 044501, p 14

  • Rosi G, Cacciapuoti L, Sorrentino F, Menchetti M, Prevedelli M, Tino GM (2015) Measurements of the gravity-field curvature by atom interferometry. Phys Rev Lett 114:013001, p 5

  • Rummel R (2010) GOCE: gravitational gradiometry in a satellite. In: Freeden W, Nashed ZM, Sonar T (eds) Handbook of geomathematics. Springer-Verlag, Berlin, pp 93–103

    Chapter  Google Scholar 

  • Rummel R, van Gelderen M (1995) Meissl scheme—spectral characteristics of physical geodesy. Manuscr Geod 20:379–385

    Google Scholar 

  • Rummel R, Sjöberg LE, Rapp R (1978) The determination of gravity anomalies from geoid heights using the inverse Stokes’ formula, Fourier transforms, and least squares collocation. NASA Contract Report 141442, Department of Geodetic Science, The Ohio State University, Columbus, Ohio, USA, p 65

  • Rummel R, van Gelderen M, Koop R, Schrama E, Sansó F, Brovelli M, Miggliaccio F, Sacerdote F (1993) Spherical harmonic analysis of satellite gradiometry. Report no. 39, Publications on Geodesy, New Series, Netherlands Geodetic Commission, Delft, The Netherlands, p 124

  • Simmonds JG (1994) A brief on tensor analysis. Undergraduate texts in mathematics, 2nd edn. Springer-Verlag, New York, p 112

    Book  Google Scholar 

  • Sorrentino F, Bodart Q, Cacciapuoti L, Lien Y-H, Prevedelli M, Rosi G, Salvi L, Tino GM (2014) Sensitivity limits of a Raman atom interferometer as a gravity gradiometer. Phys Rev 89:023607, p 14

  • Stokes GG (1849) On the variation of gravity on the surface of the Earth. Trans Camb Philos Soc 8:672–695

    Google Scholar 

  • Sünkel H (1981) Feasibility studies for the prediction of the gravity disturbance vector in high altitudes. Report No. 311, Department of Geodetic Science, The Ohio State University, Columbus, Ohio, USA, p 53

  • Šprlák M, Novák P (2014a) Integral transformations of deflections of the vertical onto satellite-to-satellite tracking and gradiometric data. J Geodesy 88:643–657

    Article  Google Scholar 

  • Šprlák M, Novák P (2014b) Integral transformations of gradiometric data onto GRACE type of observable. J Geodesy 88:377–390

    Article  Google Scholar 

  • Šprlák M, Novák P (2015) Integral formulas for computing a third-order gravitational tensor from volumetric mass density, disturbing gravitational potential, gravity anomaly and gravity disturbance. J Geodesy 89:141–157

    Article  Google Scholar 

  • Šprlák M, Novák P (2016) Spherical gravitational curvature boundary-value problem. J Geodesy 90:727–739

    Article  Google Scholar 

  • Šprlák M, Hamáčková E, Novák P (2015) Alternative validation method of satellite gradiometric data by integral transform of satellite altimetry data. J Geodesy 89:757–773

    Article  Google Scholar 

  • Šprlák M, Novák P, Pitoňák M (2016) Spherical harmonic analysis of gravitational curvatures and its implications for future satellite missions. Surveys Geophy 37:681–700

    Article  Google Scholar 

  • Šprlák M, Sebera J, Vaľko M, Novák P (2014) Spherical integral formulas for upward/downward continuation of gravitational gradients onto gravitational gradients. J Geodesy 88:179–197

    Article  Google Scholar 

  • Thalhammer M (1995) Regionale Gravitationsfeldbestimmung mit zukünftigen Satellitenmissionen (SST und Gradiometrie). Deutsche Geodätische Kommission, Reihe C, Nr. 437, München, Germany

  • Tóth G (2003) The Eötvös spherical horizontal gradiometric boundary value problem—gravity anomalies from gravity gradients of the torsion balance. In: Tziavos IN (ed) Gravity and Geoid 2002, 3rd Meeting of the International Gravity and Geoid Commission, August 26–30 2002. Thessaloniki, Greece, Ziti Publishing, Thessaloniki, Greece, pp 102–107

  • Tóth G (2005) The gradiometric-geodynamic boundary value problem. In: Jekeli C, Bastos L, Fernandes L (eds) Gravity, geoid and space missions, IAG Symposia, vol 129. Springer-Verlag Berlin, Germany, pp 352–357

  • Tóth G, Földváry L, Tziavos IN, Ádám J (2006) Upward/downward continuation of gravity gradients for precise geoid determination. Acta Geod Geophys Hung 41:21–30

  • Tóth G, Ádám J, Földváry L, Tziavos IN, Denker H (2005) Calibration/validation of GOCE data by terrestrial torsion balance observations. In: Sansó F (ed) A window on the future geodesy, IAG Symposia Series, vol 128. Springer-Verlag Berlin, Germany, pp 214–219

  • van Gelderen M, Rummel R (2001) The solution of the general geodetic boundary value problem by least squares. J Geodesy 75:1–11

    Article  Google Scholar 

  • Vaníček P, Krakiwsky EJ (1986) Geodesy: the concepts, 2nd edn. Elsevier Science Publishers B.V., Amsterdam, p 697

  • Vening-Meinesz FA (1928) A formula expressing the deflection of the plumb-lines in the gravity anomalies and some formulae for the gravity field and the gravity potential outside the geoid. Koninklijke Nederlandsche Akademie van Wetenschappen 31:315–331

    Google Scholar 

  • Winch DE, Roberts PH (1995) Derivatives of addition theorem for Legendre functions. J Aust Math Soc Ser B Appl Math 37:212–234

    Article  Google Scholar 

  • Wolf KI (2007) Kombination globaler Potentialmodelle mit terrestrische Schweredaten für die Berechnung der zweiten Ableitungen des Gravitationspotentials in Satelitenbahnhöhe. Deutsche Geodätische Kommission, Reihe C, Nr. 603, München, Germany

  • Wolf KI, Denker H (2005) Upward continuation of ground data for GOCE calibration. In: Jekeli C, Bastos L, Fernandes L (eds) Gravity, geoid and space missions, IAG symposia series, vol 129. Springer-Verlag, Berlin, pp 60–65

    Chapter  Google Scholar 

  • Zhang C (1993) Recovery of gravity information from satellite altimetry data and associated forward geopotential models. UCGE Report No. 20058, University of Calgary, Calgary, Canada, p 160

Download references

Acknowledgments

The authors were supported by the project No. GA15-08045S of the Czech Science Foundation. Thoughtful and constructive comments of the three anonymous reviewers are gratefully acknowledged. Thanks are also extended to the editor-in-chief Prof. Jürgen Kusche and the responsible editor Prof. Wolfgang Keller for handling our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Šprlák.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 27 KB)

Supplementary material 2 (mpeg 7694 KB)

Supplementary material 3 (mpeg 8000 KB)

Appendices

Appendix A: Formulas for \(u = \cos \psi \), direct azimuth \(\alpha \) and backward azimuth \(\alpha '\)

In this appendix, we provide equations for numerical calculation of the parameter \(u = \cos \psi \), direct azimuth \(\alpha \) and backward azimuth \(\alpha '\). Given the spherical coordinates of the evaluation and integration points, these parameters are defined as follows:

$$\begin{aligned} u = \cos \psi = \sin \varphi \sin \varphi ' + \cos \varphi \cos \varphi ' \cos (\lambda ' - \lambda ), \end{aligned}$$
(34a)
$$\begin{aligned} \cos \alpha= & {} \frac{1}{\sqrt{1 - u^2}} \big [ \sin \varphi ' \cos \varphi \nonumber \\&- \cos \varphi ' \sin \varphi \cos (\lambda ' - \lambda )\ \big ], \end{aligned}$$
(34b)
$$\begin{aligned} \sin \alpha = \frac{1}{\sqrt{1 - u^2}}\ \cos \varphi ' \sin (\lambda ' - \lambda ), \end{aligned}$$
(34c)
$$\begin{aligned} \cos \alpha '= & {} \frac{1}{\sqrt{1 - u^2}} \big [ \sin \varphi \cos \varphi ' \nonumber \\&- \cos \varphi \sin \varphi ' \cos (\lambda ' - \lambda )\ \big ], \end{aligned}$$
(34d)
$$\begin{aligned} \sin \alpha ' = \frac{- 1}{\sqrt{1 - u^2}}\ \cos \varphi \sin (\lambda ' - \lambda ). \end{aligned}$$
(34e)

Equations (34a)–(34e) can be derived by using cosine, sine and sine-cosine rules of spherical trigonometry, see, e.g., Chauvenet (1875, pp. 151–154).

Cosines and sines of multiples of \(\alpha \) and \(\alpha '\) also appear in Sect. 3. They read

$$\begin{aligned} \cos 2 \alpha = 2 \cos ^2 \alpha - 1, \end{aligned}$$
(35a)
$$\begin{aligned} \sin 2 \alpha = 2 \cos \alpha \sin \alpha , \end{aligned}$$
(35b)
$$\begin{aligned} \cos 3 \alpha = \cos \alpha \ (\cos ^2 \alpha - 3 \sin ^2 \alpha ), \end{aligned}$$
(35c)
$$\begin{aligned} \sin 3 \alpha = - \sin \alpha \ (\sin ^2 \alpha - 3 \cos ^2 \alpha ), \end{aligned}$$
(35d)
$$\begin{aligned} \cos 2 \alpha ' = 2 \cos ^2 \alpha ' - 1, \end{aligned}$$
(35e)
$$\begin{aligned} \sin 2 \alpha ' = 2 \cos \alpha ' \sin \alpha '. \end{aligned}$$
(35f)

Equations (35a)–(35f) can be obtained from the multiple-angle formulas for trigonometric functions, see, e.g., Abramowitz and Stegun (1972), p. 72.

Appendix B: Action of the third-order differential operators on multiplication of two functions

In this appendix, the general form resulting from the application of the third-order differential operators on multiplication of two functions is provided. This is exploited in Sects. 3.2 and 3.3 to derive integral transforms of the VH and HH gravitational tensor components onto the third-order gravitational tensor components.

We suppose two functions, i.e., \(f = f(\Omega ,\Omega ')\) and \(h = h (r,R,\Omega ,\Omega ')\). The function f depends only on the geocentric angular coordinates, while h also depends on the geocentric radii of the evaluation and integration points. We now apply the recursive formulas between the second- and third-order differential operators of Eq. (12) to the multiplication of f and h that gives:

$$\begin{aligned} \mathcal{{D}}^{xxx}(f\ h)&= f\ \mathcal{{D}}^{xxx} h + h\ \mathcal{{D}}^{xxx} f + \frac{1}{r} \frac{\partial f}{\partial \varphi }\ \mathcal{{D}}^{xx} h\nonumber \\&\quad + \frac{1}{r} \frac{\partial h}{\partial \varphi }\ \mathcal{{D}}^{xx} f + \frac{2}{r^2} \frac{\partial h}{\partial r} \frac{\partial f}{\partial \varphi }\nonumber \\&\quad + \frac{2}{r^3} \frac{\partial }{\partial \varphi } \left( \frac{\partial f}{\partial \varphi } \frac{\partial h}{\partial \varphi } \right) , \end{aligned}$$
(36a)
$$\begin{aligned} \mathcal{{D}}^{xxy}(f\ h)&= f\ \mathcal{{D}}^{xxy} h + h\ \mathcal{{D}}^{xxy} f + \frac{1}{r} \frac{\partial f}{\partial \varphi }\ \mathcal{{D}}^{xy} h\nonumber \\&\quad + \frac{1}{r} \frac{\partial h}{\partial \varphi }\ \mathcal{{D}}^{xy} f - \frac{1}{r^2 \cos \varphi } \frac{\partial h}{\partial r} \frac{\partial f}{\partial \lambda }\nonumber \\&\quad - \frac{1}{r} \frac{\partial }{\partial \varphi } \left[ \frac{1}{r^2 \cos \varphi } \left( \frac{\partial f}{\partial \varphi } \frac{\partial h}{\partial \lambda } + \frac{\partial h}{\partial \varphi } \frac{\partial f}{\partial \lambda } \right) \right] , \end{aligned}$$
(36b)
$$\begin{aligned} \mathcal{{D}}^{xxz}(f\ h)&= f\ \mathcal{{D}}^{xxz} h + h\ \mathcal{{D}}^{xxz} f + \frac{\partial h}{\partial r}\ \mathcal{{D}}^{xx} f\nonumber \\&\quad + \frac{\partial }{\partial r} \left( \frac{2}{r^2} \frac{\partial f}{\partial \varphi } \frac{\partial h}{\partial \varphi } \right) , \end{aligned}$$
(36c)
$$\begin{aligned} \mathcal{{D}}^{xyy}(f\ h)&= f\ \mathcal{{D}}^{xyy} h + h\ \mathcal{{D}}^{xyy} f\nonumber \\&\quad + \frac{1}{r} \frac{\partial f}{\partial \varphi }\ \mathcal{{D}}^{yy} h + \frac{1}{r} \frac{\partial h}{\partial \varphi }\ \mathcal{{D}}^{yy} f\nonumber \\&\quad + \frac{1}{r} \frac{\partial }{\partial \varphi } \left( \frac{2}{r^2 \cos ^2 \varphi } \frac{\partial f}{\partial \lambda } \frac{\partial h}{\partial \lambda } \right) , \end{aligned}$$
(36d)
$$\begin{aligned} \mathcal{{D}}^{xyz}(f\ h)&= f\ \mathcal{{D}}^{xyz}\ h + h \mathcal{{D}}^{xyz} \ f + \frac{\partial h}{\partial r} \mathcal{{D}}^{xy} \ f\nonumber \\&\quad - \frac{\partial }{\partial r} \left[ \frac{1}{r^2 \cos \varphi } \left( \frac{\partial f}{\partial \varphi } \frac{\partial h}{\partial \lambda } + \frac{\partial h}{\partial \varphi } \frac{\partial f}{\partial \lambda } \right) \right] , \end{aligned}$$
(36e)
$$\begin{aligned} \mathcal{{D}}^{xzz}(f\ h)&= f\ \mathcal{{D}}^{xzz}\ h + h\ \mathcal{{D}}^{xzz}\ f \nonumber \\&\quad + \frac{\partial h}{\partial r}\ \mathcal{{D}}^{xz}\ f + \frac{\partial }{\partial r} \left( \frac{1}{r} \frac{\partial h}{\partial r} \frac{\partial f}{\partial \varphi } \right) , \end{aligned}$$
(36f)
$$\begin{aligned} \mathcal{{D}}^{yyy}(f\ h)&= f\ \mathcal{{D}}^{yyy}\ h + h\ \mathcal{{D}}^{yyy}\ f - \frac{1}{r \cos \varphi } \frac{\partial f}{\partial \lambda }\ \mathcal{{D}}^{yy}\ h \nonumber \\&\quad - \frac{1}{r \cos \varphi } \frac{\partial h}{\partial \lambda }\ \mathcal{{D}}^{yy}\ f- \frac{2}{r^2 \cos \varphi } \frac{\partial h}{\partial r} \frac{\partial f}{\partial \lambda } \nonumber \\&\quad + \frac{2 \tan \varphi }{r^3 \cos \varphi } \left( \frac{\partial f}{\partial \varphi } \frac{\partial h}{\partial \lambda } + \frac{\partial h}{\partial \varphi } \frac{\partial f}{\partial \lambda } \right) \nonumber \\&\quad - \frac{1}{r \cos \varphi } \frac{\partial }{\partial \lambda } \left( \frac{2}{r^2 \cos ^2 \varphi } \frac{\partial f}{\partial \lambda } \frac{\partial h}{\partial \lambda } \right) , \end{aligned}$$
(36g)
$$\begin{aligned} \mathcal{{D}}^{yyz}(f\ h)&= f\ \mathcal{{D}}^{yyz}\ h + h\ \mathcal{{D}}^{yyz}\ f + \frac{\partial h}{\partial r}\ \mathcal{{D}}^{yy}\ f \nonumber \\&\quad + \frac{\partial }{\partial r} \left( \frac{2}{r^2 \cos ^2 \varphi } \frac{\partial f}{\partial \lambda } \frac{\partial h}{\partial \lambda } \right) , \end{aligned}$$
(36h)
$$\begin{aligned} \mathcal{{D}}^{yzz}(f\ h)&= f\ \mathcal{{D}}^{yzz}\ h + h\ \mathcal{{D}}^{yzz}\ f + \frac{\partial h}{\partial r}\ \mathcal{{D}}^{yz}\ f \nonumber \\&\quad - \frac{\partial }{\partial r} \left( \frac{1}{r \cos \varphi } \frac{\partial h}{\partial r} \frac{\partial f}{\partial \lambda } \right) , \end{aligned}$$
(36i)
$$\begin{aligned} \mathcal{{D}}^{zzz}(f\ h) = f\ \mathcal{{D}}^{zzz}\ h. \end{aligned}$$
(36j)

Appendix C: Derivatives of the backward azimuth \(\alpha '\)

In Eqs. (36a)–(36i), the first-order derivatives with respect to the spherical geocentric angular coordinates \(\varphi \) and \(\lambda \) as well as the second- and third-order differential operators are applied to the function f. In this appendix, we provide formulas for the action of such differential operators assuming \(f = \cos \alpha '\), \(\sin \alpha '\), \(\cos 2 \alpha '\) and \(\sin 2\alpha '\). These are expressed in terms of the parameters \(t, u, \alpha \) and \(\alpha '\), and exploited for the mathematical derivations in Sect. 3.

The first-order derivatives of \(\cos \alpha '\) read as follows, see, e.g., Winch and Roberts (1995):

$$\begin{aligned} \frac{\partial \cos \alpha '}{\partial \varphi } = \frac{- 1}{\sqrt{1 - u^2}}\ \sin \alpha ' \sin \alpha , \end{aligned}$$
(37a)
$$\begin{aligned} \frac{\partial \cos \alpha '}{\partial \lambda } = \frac{\cos \varphi }{\sqrt{1 - u^2}}\ \sin \alpha ' \cos \alpha . \end{aligned}$$
(37b)

We can easily obtain:

  • derivatives of \(\sin \alpha '\) by changing \(\sin \alpha ' \rightarrow - \cos \alpha '\),

  • derivatives of \(\cos 2\alpha '\) by changing \(\sin \alpha ' \rightarrow 2\sin 2\alpha '\),

  • derivatives of \(\sin 2\alpha '\) by changing \(\sin \alpha ' \rightarrow - 2\cos 2\alpha '\),

in Eqs. (37a)–(37b).

Formulas for the action of the second-order operators \(\mathcal{{D}}^{xx}\), \(\mathcal{{D}}^{xy}\), \(\mathcal{{D}}^{xz}\), \(\mathcal{{D}}^{yy}\) and \(\mathcal{{D}}^{yz}\) to \(\cos \alpha '\) are of the form (Šprlák et al. 2014):

$$\begin{aligned} \mathcal{{D}}^{xx} \cos \alpha '&= \frac{- t^2}{2 R^2 (1 - u^2)}\nonumber \\&\quad \times \big [ \cos \alpha ' (1 - \cos 2 \alpha ) + 2 u \sin \alpha ' \sin 2 \alpha \big ], \end{aligned}$$
(38a)
$$\begin{aligned} \mathcal{{D}}^{xy} \cos \alpha '&= \frac{- t^2}{2 R^2 (1 - u^2)}\nonumber \\&\quad \times (\cos \alpha ' \sin 2 \alpha + 2 u \sin \alpha ' \cos 2 \alpha ), \end{aligned}$$
(38b)
$$\begin{aligned} \mathcal{{D}}^{xz} \cos \alpha ' = \frac{t^2}{R^2 \sqrt{1 - u^2}}\ \sin \alpha ' \sin \alpha , \end{aligned}$$
(38c)
$$\begin{aligned} \mathcal{{D}}^{yy} \cos \alpha '= & {} \frac{- t^2}{2 R^2 (1 - u^2)} \big [ \cos \alpha ' (1 + \cos 2 \alpha ) \nonumber \\&- 2 u \sin \alpha ' \sin 2 \alpha \big ], \end{aligned}$$
(38d)
$$\begin{aligned} \mathcal{{D}}^{yz} \cos \alpha ' = \frac{t^2}{R^2 \sqrt{1 - u^2}}\ \sin \alpha ' \cos \alpha . \end{aligned}$$
(38e)

One can also obtain the action of the second-order differential operators to:

  • \(\sin \alpha '\) by changing \(\sin \alpha ' \rightarrow - \cos \alpha '\) and \(\cos \alpha ' \rightarrow \sin \alpha '\),

  • \(\cos 2\alpha '\) by changing \(\sin \alpha ' \rightarrow 2\sin 2\alpha '\) and \(\cos \alpha ' \rightarrow 4 \cos 2\alpha '\),

  • \(\sin 2\alpha '\) by changing \(\sin \alpha ' \rightarrow - 2\cos 2\alpha '\) and \(\cos \alpha ' \rightarrow 4 \sin 2\alpha '\),

in Eqs. (38a)–(38e).

By applying the third-order differential operators \(\mathcal{{D}}^{xxx}\), \(\mathcal{{D}}^{xxy}\), \(\mathcal{{D}}^{xxz}\), \(\mathcal{{D}}^{xyy}\), \(\mathcal{{D}}^{xyz}\), \(\mathcal{{D}}^{xzz}\), \(\mathcal{{D}}^{yyy}\), \(\mathcal{{D}}^{yyz}\) and \(\mathcal{{D}}^{yzz}\) to \(\cos \alpha '\) we get:

$$\begin{aligned} \mathcal{{D}}^{xxx} \cos \alpha '&= \frac{3 t^3}{4 R^3 (1 - u^2)^{3/2}}\big [ \sin \alpha ' (3 \sin \alpha - \sin 3 \alpha ) \nonumber \\&\quad - 2 u \cos \alpha ' (\cos \alpha - \cos 3 \alpha )\nonumber \\&\quad - 2 u^2 \sin \alpha ' (\sin \alpha + \sin 3 \alpha )\big ], \end{aligned}$$
(39a)
$$\begin{aligned} \mathcal{{D}}^{xxy} \cos \alpha '&= \frac{t^3}{4 R^3 (1 - u^2)^{3/2}}\big [ 3 \sin \alpha ' (\cos \alpha - \cos 3 \alpha ) \nonumber \\&\quad + 2 u \cos \alpha ' (\sin \alpha - 3 \sin 3 \alpha )\nonumber \\&\quad - 2 u^2 \sin \alpha ' (\cos \alpha + 3 \cos 3 \alpha )\big ], \end{aligned}$$
(39b)
$$\begin{aligned} \mathcal{{D}}^{xxz} \cos \alpha '&= \frac{t^3}{R^3 (1 - u^2)}\big [ \cos \alpha ' (1 - \cos 2 \alpha ) \nonumber \\&\quad + 2 u \sin \alpha ' \sin 2 \alpha \big ], \end{aligned}$$
(39c)
$$\begin{aligned} \mathcal{{D}}^{xyy} \cos \alpha '&= \frac{t^3}{4 R^3 (1 - u^2)^{3/2}}\ \big [ 3 \sin \alpha ' (\sin \alpha + \sin 3 \alpha )\nonumber \\&\quad - 2 u \cos \alpha ' (\cos \alpha + 3 \cos 3 \alpha )\nonumber \\&\quad - 2 u^2 \sin \alpha ' (\sin \alpha - 3 \sin 3 \alpha )\big ], \end{aligned}$$
(39d)
$$\begin{aligned} \mathcal{{D}}^{xyz} \cos \alpha '= & {} \frac{t^3}{R^3 (1 - u^2)}\ (\cos \alpha ' \sin 2\alpha \nonumber \\&+ 2 u \sin \alpha ' \cos 2\alpha ), \end{aligned}$$
(39e)
$$\begin{aligned} \mathcal{{D}}^{xzz} \cos \alpha ' = \frac{-2 t^3}{R^3 \sqrt{1 - u^2}}\ \sin \alpha ' \sin \alpha , \end{aligned}$$
(39f)
$$\begin{aligned} \mathcal{{D}}^{yyy} \cos \alpha '&= \frac{3 t^3}{4 R^3 (1 - u^2)^{3/2}}\ \big [ \sin \alpha ' (3 \cos \alpha + \cos 3 \alpha )\nonumber \\&\quad + 2 u \cos \alpha ' (\sin \alpha + \sin 3 \alpha )\nonumber \\&\quad - 2 u^2 \sin \alpha ' (\cos \alpha - \cos 3 \alpha )\big ], \end{aligned}$$
(39g)
$$\begin{aligned} \mathcal{{D}}^{yyz} \cos \alpha '= & {} \frac{t^3}{R^3 (1 - u^2)} \big [ \cos \alpha ' (1 + \cos 2 \alpha )\nonumber \\&- 2 u \sin \alpha ' \sin 2\alpha \ \big ], \end{aligned}$$
(39h)
$$\begin{aligned} \mathcal{{D}}^{yzz} \cos \alpha ' = \frac{-2 t^3}{R^3 \sqrt{1 - u^2}}\ \sin \alpha ' \cos \alpha . \end{aligned}$$
(39i)

We arrive at the formulas for the application of the third-order differential operators for:

  • \(\sin \alpha '\) by changing \(\sin \alpha ' \rightarrow - \cos \alpha '\) and \(\cos \alpha ' \rightarrow \sin \alpha '\).

  • \(\cos 2\alpha '\) by changing \(\cos \alpha ' \rightarrow 4 \cos 2\alpha '\); in addition, we change \(\sin \alpha ' \rightarrow 2\sin 2\alpha '\) for the operators \(\mathcal{{D}}^{xxz}\), \(\mathcal{{D}}^{xyz}\), \(\mathcal{{D}}^{xzz}\), \(\mathcal{{D}}^{yyz}\) and also when \(\sin \alpha '\) is multiplied by \(u^2\), i.e., in the third terms inside the square brackets for the operators \(\mathcal{{D}}^{xxx}\), \(\mathcal{{D}}^{xxy}\), \(\mathcal{{D}}^{xyy}\) and \(\mathcal{{D}}^{yyy}\); for the purely horizontal operators, another change \(\sin \alpha ' \rightarrow 4\sin 2\alpha '\) is applied in the first terms inside the square brackets,

  • \(\sin 2\alpha '\) by changing \(\cos \alpha ' \rightarrow 4 \sin 2\alpha '\); moreover, the substitution \(\sin \alpha ' \rightarrow - 2\cos 2\alpha '\) is applied for the operators \(\mathcal{{D}}^{xxz}\), \(\mathcal{{D}}^{xyz}\), \(\mathcal{{D}}^{xzz}\), \(\mathcal{{D}}^{yyz}\) and also when \(\sin \alpha '\) is multiplied by \(u^2\) in the third terms inside the square brackets for the operators \(\mathcal{{D}}^{xxx}\), \(\mathcal{{D}}^{xxy}\), \(\mathcal{{D}}^{xyy}\) and \(\mathcal{{D}}^{yyy}\); for the purely horizontal differential operators, we also change \(\sin \alpha ' \rightarrow -4\cos 2\alpha '\) in the first terms inside the square brackets,

in Eqs. (39a)–(39i).

Appendix D: Auxiliary terms from the action of the third-order differential operators on multiplication of two functions

In this appendix, formulas for the auxiliary terms in Eqs. (36a)–(36i), i.e., all terms except for the action of the second and third-order differential operators, are provided. Similar to “Appendix C”, the auxiliary terms are given for \(f = \cos \alpha '\), \(\sin \alpha '\), \(\cos 2 \alpha '\) and \(\sin 2\alpha '\) in terms of the parameters t, u, \(\alpha \) and \(\alpha '\). However, we still assume the general function \(h = h (r,R,\Omega ,\Omega ')\) specified in Sect. 3.

The auxiliary terms of Eqs. (36a)–(36i) for \(f = \cos \alpha '\) read:

$$\begin{aligned}&\frac{2}{r^2} \frac{\partial h}{\partial r} \frac{\partial f}{\partial \varphi } + \frac{2}{r^3} \frac{\partial }{\partial \varphi } \left( \frac{\partial f}{\partial \varphi } \frac{\partial h}{\partial \varphi } \right) \nonumber \\&\quad = \frac{t^3}{R^3}\Bigg \{\sin \alpha ' \Bigg [\sin \alpha \Bigg (\frac{2t}{\sqrt{1-u^2}} \frac{\partial h}{\partial t} + \frac{u}{\sqrt{1-u^2}} \frac{\partial h}{\partial u}\nonumber \\&\qquad - \frac{\sqrt{1-u^2}}{2} \frac{\partial ^2 h}{\partial u^2}\Bigg ) - \sin 3 \alpha \left( \frac{u}{\sqrt{1-u^2}} \frac{\partial h}{\partial u}\right. \nonumber \\&\qquad \left. + \frac{\sqrt{1-u^2}}{2} \frac{\partial ^2 h}{\partial u^2}\right) \Bigg ]- \frac{\cos \alpha ' \left( \cos \alpha - \cos 3 \alpha \right) }{2 \sqrt{1-u^2}} \frac{\partial h}{\partial u} \Bigg \}, \end{aligned}$$
(40a)
$$\begin{aligned}&- \frac{1}{r^2 \cos \varphi } \frac{\partial h}{\partial r} \frac{\partial f}{\partial \lambda } - \frac{1}{r} \frac{\partial }{\partial \varphi } \left[ \frac{1}{r^2 \cos \varphi } \left( \frac{\partial f}{\partial \varphi } \frac{\partial h}{\partial \lambda } + \frac{\partial h}{\partial \varphi } \frac{\partial f}{\partial \lambda } \right) \right] \nonumber \\&\quad = \frac{t^3}{R^3} \Bigg \{\sin \alpha ' \Bigg [\cos \alpha \left( \frac{t}{\sqrt{1-u^2}} \frac{\partial h}{\partial t} \right. \nonumber \\&\quad \quad \left. +\frac{u}{\sqrt{1-u^2}} \frac{\partial h}{\partial u} - \frac{\sqrt{1-u^2}}{2} \frac{\partial ^2 h}{\partial u^2}\right) \nonumber \\&\qquad - \cos 3 \alpha \left( \frac{u}{\sqrt{1-u^2}} \frac{\partial h}{\partial u} + \frac{\sqrt{1-u^2}}{2} \frac{\partial ^2 h}{\partial u^2}\right) \Bigg ]\nonumber \\&\qquad + \frac{\cos \alpha ' \left( \sin \alpha - \sin 3 \alpha \right) }{2 \sqrt{1-u^2}} \frac{\partial h}{\partial u} \Bigg \}, \end{aligned}$$
(40b)
$$\begin{aligned} \frac{\partial }{\partial r} \left( \frac{2}{r^2} \frac{\partial f}{\partial \varphi } \frac{\partial h}{\partial \varphi } \right) = \frac{t^3}{R^3} \sin \alpha ' \sin 2 \alpha \left( 2 \frac{\partial h}{\partial u} + t \frac{\partial ^2 h}{\partial t \partial u}\right) ,\nonumber \\ \end{aligned}$$
(40c)
$$\begin{aligned}&\frac{1}{r} \frac{\partial }{\partial \varphi } \left( \frac{2}{r^2 \cos ^2 \varphi } \frac{\partial f}{\partial \lambda } \frac{\partial h}{\partial \lambda } \right) \nonumber \\&\quad = \frac{t^3}{R^3}\Bigg \{\sin \alpha ' \Bigg [\sin \alpha \left( \frac{\sqrt{1-u^2}}{2} \frac{\partial ^2 h}{\partial u^2} - \frac{u}{\sqrt{1-u^2}} \frac{\partial h}{\partial u}\right) \nonumber \\&\quad + \sin 3 \alpha \left( \frac{u}{\sqrt{1-u^2}} \frac{\partial h}{\partial u} + \frac{\sqrt{1-u^2}}{2} \frac{\partial ^2 h}{\partial u^2}\right) \Bigg ]\nonumber \\&\quad + \frac{\cos \alpha ' \left( \cos \alpha - \cos 3 \alpha \right) }{2 \sqrt{1-u^2}} \frac{\partial h}{\partial u} \Bigg \}, \end{aligned}$$
(40d)
$$\begin{aligned}&- \frac{\partial }{\partial r} \left[ \frac{1}{r^{2} \cos \varphi } \left( \frac{\partial f}{\partial \varphi } \frac{\partial h}{\partial \lambda } + \frac{\partial h}{\partial \varphi } \frac{\partial f}{\partial \lambda } \right) \right] \nonumber \\&\quad = \frac{t^3}{R^3} \sin \alpha ' \cos 2 \alpha \left( 2 \frac{\partial h}{\partial u} + t \frac{\partial ^2 h}{\partial t \partial u}\right) , \end{aligned}$$
(40e)
$$\begin{aligned}&\frac{\partial }{\partial r} \left( \frac{1}{r} \frac{\partial h}{\partial r} \frac{\partial f}{\partial \varphi } \right) \nonumber \\&\quad = - \frac{t^4}{R^3 \sqrt{1-u^2}} \sin \alpha ' \sin \alpha \left( 3 \frac{\partial h}{\partial t} + t \frac{\partial ^2 h}{\partial t^2}\right) , \end{aligned}$$
(40f)
$$\begin{aligned}&- \frac{2}{r^2 \cos \varphi } \frac{\partial h}{\partial r} \frac{\partial f}{\partial \lambda } + \frac{2 \tan \varphi }{r^3 \cos \varphi } \left( \frac{\partial f}{\partial \varphi } \frac{\partial h}{\partial \lambda } + \frac{\partial h}{\partial \varphi } \frac{\partial f}{\partial \lambda } \right) \nonumber \\&\qquad - \frac{1}{r \cos \varphi } \frac{\partial }{\partial \lambda } \left( \frac{2}{r^2 \cos ^2 \varphi } \frac{\partial f}{\partial \lambda } \frac{\partial h}{\partial \lambda } \right) \nonumber \\&\quad = \frac{t^3}{R^3} \Bigg \{\sin \alpha ' \Bigg [\cos \alpha \left( \frac{2t}{\sqrt{1-u^2}} \frac{\partial h}{\partial t}\right. \nonumber \\&\quad \left. + \frac{u}{\sqrt{1-u^2}} \frac{\partial h}{\partial u} - \frac{\sqrt{1-u^2}}{2} \frac{\partial ^2 h}{\partial u^2}\right) \nonumber \\&\qquad + \cos 3 \alpha \left( \frac{u}{\sqrt{1-u^2}} \frac{\partial h}{\partial u} + \frac{\sqrt{1-u^2}}{2} \frac{\partial ^2 h}{\partial u^2}\right) \Bigg ] \nonumber \\&\quad + \frac{\cos \alpha ' \left( \sin \alpha + \sin 3 \alpha \right) }{2 \sqrt{1-u^2}} \frac{\partial h}{\partial u} \Bigg \}, \end{aligned}$$
(40g)
$$\begin{aligned}&\frac{\partial }{\partial r} \left( \frac{2}{r^2 \cos ^2 \varphi } \frac{\partial f}{\partial \lambda } \frac{\partial h}{\partial \lambda } \right) \nonumber \\&\quad = - \frac{t^3}{R^3} \sin \alpha ' \sin 2\alpha \left( 2 \frac{\partial h}{\partial u} + t \frac{\partial ^2 h}{\partial t \partial u}\right) , \end{aligned}$$
(40h)
$$\begin{aligned}&- \frac{\partial }{\partial r} \left( \frac{1}{r \cos \varphi } \frac{\partial h}{\partial r} \frac{\partial f}{\partial \lambda } \right) \nonumber \\&\quad = - \frac{t^4}{R^3 \sqrt{1-u^2}} \sin \alpha ' \cos \alpha \left( 3 \frac{\partial h}{\partial t} + t \frac{\partial ^2 h}{\partial t^2}\right) . \end{aligned}$$
(40i)

We can also obtain the auxiliary terms for:

  • \(f = \sin \alpha '\) by changing \(\sin \alpha ' \rightarrow - \cos \alpha '\) and \(\cos \alpha ' \rightarrow \sin \alpha '\),

  • \(f = \cos 2\alpha '\) by changing \(\sin \alpha ' \rightarrow 2\sin 2\alpha '\) and \(\cos \alpha ' \rightarrow 4 \cos 2\alpha '\),

  • \(f = \sin 2\alpha '\) by changing \(\sin \alpha ' \rightarrow - 2\cos 2\alpha '\) and \(\cos \alpha ' \rightarrow 4 \sin 2\alpha '\),

in Eqs. (40a)–(40i).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Šprlák, M., Novák, P. Spherical integral transforms of second-order gravitational tensor components onto third-order gravitational tensor components. J Geod 91, 167–194 (2017). https://doi.org/10.1007/s00190-016-0951-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-016-0951-4

Keywords

Navigation