Skip to main content
Log in

Monument-antenna effects on GPS coordinate time series with application to vertical rates in Antarctica

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

We examine the electromagnetic coupling of a GPS antenna–monument pair in terms of its simulated affect on long GPS coordinate time series. We focus on the Earth and Polar Observing System (POLENET) monument design widely deployed in Antarctica and Greenland in projects interested particularly in vertical velocities. We base our tests on an absolute robot calibration that included the top ~0.15 m of the monument and use simulations to assess its effect on site coordinate time series at eight representative POLENET sites in Antarctica over the period 2000.0–2011.0. We show that the neglect of this calibration would introduce mean coordinate bias, and most importantly for velocity estimation, coordinate noise which is highly sensitive to observation geometry and hence site location and observation period. Considering only sub-periods longer than 2.5 years, we show vertical site velocities may be biased by up to ±0.4 mm/year, and biases up to 0.2 mm/year may persist for observation spans of 8 years. Changing between uniform and elevation-dependent observation weighting alters the time series but does not remove the velocity biases, nor does ambiguity fixing. The effect on the horizontal coordinates is negligible. The ambiguities fixed series spectra show noise between flicker and random walk with near-white noise at the highest frequencies, with mean spectral indices (frequencies <20 cycles per year) of approximately −1.3 (uniform weighting) and −1.4 (elevation-dependent weighting). While the results are likely highly monument specific, they highlight the importance of accounting for monument effects when analysing vertical coordinate time series and velocities for the highest precision and accuracy geophysical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agnew DC (1992) The time-domain behavior of power-law noises. Geophys Res Lett 19: 333–336

    Article  Google Scholar 

  • Amiri-Simkooei AR, Tiberius CCJM, Teunissen PJG (2007) Assessment of noise in GPS coordinate time series: methodology and results. J Geophys Res 112:B07413. doi:10.1029/2006JB004913

  • Balanis CA (2005) Antenna theory: analysis design. Wiley, New York

    Google Scholar 

  • Bevis M, Kendrick E, Smalley R Jr, Dalziel I, Caccamise D, Sasgen I, Helsen M, Taylor FW, Zhou H, Brown A, Raleigh D, Willis M, Wilson T, Konfal S (2009) Geodetic measurements of vertical crustal velocity in West Antarctica and the implications for ice mass balance. Geochem Geophys Geosyst 10: Q10005. doi:10.1029/2009gc002642

    Article  Google Scholar 

  • Blewitt G, Lavallee D (2002) Effect of annual signals on geodetic velocity. J Geophys Res 107: 2145. doi:10.1029/2001JB000570

    Article  Google Scholar 

  • Dach R, Hugentobler U, Fridez P, Meindl M (2007) The Bernese GPS software version 5.0. In: Astronomical Institute. University of Bern, Bern

  • Dilßner F, Seeber G, Schmitz M, Wübbena G, Toso G, Maeusli D (2006) Characterisation of GOCE SSTI antennas. Zeitschrift für Vermessungswesen 131: 61–71

    Google Scholar 

  • Dilssner F, Seeber G, Wübbena G, Schmitz M (2008) Impact of near-field effects on the GNSS position solution. In: ION GNSS 2008. Institute of Navigation, Savannah, GA, pp 612–623

  • Dow JM, Neilan RE, Rizos C (2009) The international GNSS service in a changing landscape of global navigation satellite systems. J Geod 83: 191–198. doi:10.1007/s00190-008-0300-3

    Article  Google Scholar 

  • Elosegui P, Davis JL, Jaldehag RTK, Johansson JM, Niell AE (1995) Shapiro II geodesy using the global positioning system—the effects of signal scattering on estimates of site position. J Geophys Res 100: 9921–9934

    Article  Google Scholar 

  • Georgiadou Y, Kleusberg A (1988) On carrier signal multipath effects in relative GPS positioning. Manuscr Geodaet 13: 172–179

    Google Scholar 

  • Gross R, Beutler G, Plag HP (2009) Integrated scientific and societal user requirements and functional specifications for the GGOS. In: Global geodetic observing system, pp 209–224

  • Hatanaka Y, Sawada M, Horita A, Kusaka M (2001a) Calibration of antenna-radome and monument-multipath effect of GEONET. Part 1: measurement of phase characteristics. Earth Planets Space 53: 13–21

    Google Scholar 

  • Hatanaka Y, Sawada M, Horita A, Kusaka M, Johnson JM, Rocken C (2001b) Calibration of antenna-radome and monument-multipath effect of GEONET. Part 2: evaluation of the phase map by GEONET data. Earth Planets Space 53: 23–30

    Google Scholar 

  • Herring TA, King RW, McClusky SC (2010) Documentation for the GAMIT GPS analysis software. Massachusetts Institute of Technology, Cambridge

    Google Scholar 

  • Hirt C, Schmitz M, Feldmann-Westendorff U, Wübbena G, Jahn C-H, Seeber G (2011) Mutual validation of GNSS height measurements and high-precision geometric-astronomical leveling. GPS Sol 15: 149–159. doi:10.1007/s10291-010-0179-3

    Article  Google Scholar 

  • Johansson JM, Emardson TR, Jarlemark POJ, Gradinarsky LP, Elgered G (1998) The atmospheric influence on the results from the Swedish GPS network. Phys Chem Earth 23: 107–112

    Article  Google Scholar 

  • King MA, Watson CS (2010) Long GPS coordinate time series: multipath and geometry effects. J Geophys Res 115: B04403. doi:10.1029/2009JB006543

    Article  Google Scholar 

  • King MA, Williams SD (2009) Apparent stability of GPS monumentation from short-baseline time series. J Geophys Res 114: B10403. doi:10.1029/2009JB006319

    Article  Google Scholar 

  • King M, Coleman R, Nguyen L (2003) Spurious periodic horizontal signals in sub-daily GPS position estimates. J Geod 77: 15–21. doi:10.1007/s00190-002-0308-z

    Article  Google Scholar 

  • King MA, Altamimi Z, Boehm J, Bos M, Dach R, Elosegui P, Fund F, Hernández-Pajares M, Lavallée D, Mendes Cerveira PJ, Penna N, Riva REM, Steigenberger P, van Dam T, Vittuari L, Williams S, Willis P (2010) Improved constraints to models of glacial isostatic adjustment: a review of the contribution of ground-based geodetic observations. Surv Geophys 31: 465–507. doi:10.1007/s10712-010-9100-4

    Article  Google Scholar 

  • Mader GL (1999) GPS antenna calibration at the National Geodetic Survey. GPS Sol 3: 50–58

    Article  Google Scholar 

  • Meertens C, Rocken C, Braun J, Stephens B, Alber C, Ware R, Exner M, Kolesnikoff P (1997) Antenna type, mount, height, mixing, and snow effects in high-accuracy GPS observations. In: Ware RH, Bermann EA, Herring TA, Neilan RE, Remondi BW, Serafin RJ, Stewart WK, Turner DA, Levin GM, Morrison T (eds) The global positioning system for the geosciences: summary and proceedings of a workshop on improving the GPS reference station infrastructure for Earth, oceanic, and atmospheric science applications. National Academy Press, Washington

    Google Scholar 

  • Owen S, Webb F (2005) Impact of GPS satellite antenna phase center variations and modified sidereal filtering on reference frame determination. Eos Trans AGU, 85. Fall Meet. Suppl., Abstract G32A-06

  • Ray J, Altamimi Z, Collilieux X, Van Dam T (2008) Anomalous harmonics in the spectra of GPS position estimates. GPS Sol 12: 55–64. doi:10.1007/s10291-007-0067-7

    Article  Google Scholar 

  • Santamaría-Gómez A, Bouin M-N, Collilieux X, Wöppelmann G (2011) Correlated errors in GPS position time series: implications for velocity estimates. J Geophys Res 116: B01405. doi:10.1029/2010JB007701

    Article  Google Scholar 

  • Schmid R, Rothacher M (2003) Estimation of elevation-dependent satellite antenna phase center variations of GPS satellites. J Geod 77: 440–446. doi:10.1007/s00190-003-0339-0

    Article  Google Scholar 

  • Schmid R, Rothacher M, Thaller D, Steigenberger P (2005) Absolute phase center corrections of satellite and receiver antennas—impact on global GPS solutions and estimation of azimuthal phase center variations of the satellite antenna. GPS Sol 9:283–293. doi:10.1007/s10291-005-0134-x

    Google Scholar 

  • Schupler BR (2001) The response of GPS antennas—how design, environment and frequency affect what you see. Phys Chem Earth 26: 605–611

    Article  Google Scholar 

  • Schupler BR, Clark TA (1991) How different antennas affect the GPS observable. GPS World 32–36

  • Schupler BR, Allshouse RL, Clark TA (1994) Signal characteristics of GPS user antennas. Navigation 41: 277–296

    Google Scholar 

  • Segall P, Davis JL (1997) GPS applications for geodynamics and earthquake studies. Annu Rev Earth Planet Sci 25: 301–336

    Article  Google Scholar 

  • Steigenberger P, Rothacher M, Dietrich R, Fritsche M, Rulke A, Vey S (2006) Reprocessing of a global GPS network. J Geophys Res 111: B05402. doi:10.1029/2005JB003747

    Article  Google Scholar 

  • Tranquilla JM, Colpitts BG (1988) GPS antenna design characteristics for high-precision applications. J Surv Eng-ASCE 115: 2–14

    Article  Google Scholar 

  • Tregoning P, Watson C (2009) Atmospheric effects and spurious signals in GPS analyses. J Geophys Res 114: B09403. doi:10.1029/2009JB006344

    Article  Google Scholar 

  • Tregoning P, Watson CW (2011) Correction to ‘Atmospheric effects and spurious signals in GPS analyses’. J Geophys Res. doi:10.1029/2010JB008157

  • Webb FH, Zumberge JF (1995) An introduction to GIPSY/OASIS-II precision software for the analysis of data from the global positioning system. Jet Propulsion Laboratory, Pasadena

    Google Scholar 

  • Williams SDP (2003) The effect of coloured noise on the uncertainties of rates estimated from geodetic time series. J Geod 76: 483–494. doi:10.1007/s00190-002-0283-4

    Article  Google Scholar 

  • Wübbena G, Schmitz M (1997) A new approach for field calibration of absolute GPS antenna phase centre variations. Navigation 44: 247–255

    Google Scholar 

  • Wübbena G, Schmitz M, Menge F, Böder V, Seeber G (2000) Automated absolute field calibration of GPS antennas in real-time. In: 13th International technical meeting of the Satellite Division of the Institute of Navigation ION GPS 2000. Institute of Navigation Salt Lake City, Utah, USA, pp 2512–2522

  • Wübbena G, Schmitz M, Boettcher G (2006) Near-field effects on GNSS sites: analysis using absolute robot calibrations and procedures to determine corrections. In: IGS Workshop 2006: perspectives and visions for 2010 and beyond. ESOC, Darmstadt, Germany

  • Zumberge JF, Heflin MB, Jefferson DC, Watkins MM, Webb FH (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res 102: 5005–5017

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matt A. King.

Rights and permissions

Reprints and permissions

About this article

Cite this article

King, M.A., Bevis, M., Wilson, T. et al. Monument-antenna effects on GPS coordinate time series with application to vertical rates in Antarctica. J Geod 86, 53–63 (2012). https://doi.org/10.1007/s00190-011-0491-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-011-0491-x

Keywords

Navigation