Skip to main content
Log in

Geometric- and force-induced errors compensation and uncertainty analysis of rotary axis in 5-axis ultra-precision machine tool

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In machining of a microstructure on a free form surface, a five-axis ultra-precision machine tool has a great advantage in its flexibility and efficiency compared to a conventional machine tool. However, rotary axes in the five-axis machine tool are sensitive to position errors due to low rigidity. In addition, micro-tools, which are utilized in micro-machining, have low stiffness. The low rigidity and stiffness of the rotary axes and tool introduce geometric errors in machining. Therefore, the position and orientation errors of the rotary axes and the micro-tool must be identified and compensated. Many components contribute to uncertainty of the measurements which will inevitably reduce the reliability of the results. Therefore, it is necessary to analyze the uncertainty of each component. This paper proposed a method to comprehensively identify position-independent geometric errors (PIGEs) and force-induced errors (FIEs) of a system from the rotary axis on the machine to the micro-tool. A simple and practical error model to represent the tool position with respect to the angle of the rotary axis was built. Uncertainty was analyzed to validate the reliability of the proposed method. Cutting experiments were carried out on an AISI 1018 steel and an Al6061 workpiece, and the results were analyzed to verify the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Ramesh R, Mannan MA, Poo AN (2000) Error compensation in machine tools — a review: part I: geometric, cutting-force induced and fixture-dependent errors. Int J Mach Tools Manuf 40:1235–1256. https://doi.org/10.1016/S0890-6955(00)00009-2

    Article  Google Scholar 

  2. Ratchev S, Liu S, Becker AA (2005) Error compensation strategy in milling flexible thin-wall parts. J Mater Process Technol 162–163:673–681. https://doi.org/10.1016/j.jmatprotec.2005.02.192

    Article  Google Scholar 

  3. Fan KG, Yang JG, Yang LY (2013) Orthogonal polynomials-based thermally induced spindle and geometric error modeling and compensation. Int J Adv Manuf Technol 65:1791–1800. https://doi.org/10.1007/s00170-012-4301-2

    Article  Google Scholar 

  4. ISO 230-1 (2012) Test code for machine tools — part 1: geometric accuracy of machines operating under no-load or quasi-static conditions. In: ISO. http://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/04/64/46449.html. Accessed 18 Nov 2019

  5. ISO 230-7 (2015) Test code for machine tools — part 7: geometric accuracy of axes of rotation. In: ISO. https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/05/66/56624.html. Accessed 24 May 2020

  6. ISO 10791-1 (2015) Test conditions for machining centres — part 1: geometric tests for machines with horizontal spindle (horizontal Z-axis). In: ISO. https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/05/47/54729.html. Accessed 11 Jun 2020

  7. Lee KI, Yang SH (2013) Measurement and verification of position-independent geometric errors of a five-axis machine tool using a double ball-bar. Int J Mach Tools Manuf 70:45–52. https://doi.org/10.1016/j.ijmachtools.2013.03.010

    Article  Google Scholar 

  8. Huang ND, Bi QZ, Wang YH (2015) Identification of two different geometric error definitions for the rotary axis of the 5-axis machine tools. Int J Mach Tools Manuf 91:109–114. https://doi.org/10.1016/j.ijmachtools.2015.02.003

    Article  Google Scholar 

  9. Ding S, Huang XD, Yu CJ, Liu XY (2016) Identification of different geometric error models and definitions for the rotary axis of five-axis machine tools. Int J Mach Tools Manuf 100:1–6. https://doi.org/10.1016/j.ijmachtools.2015.09.008

    Article  Google Scholar 

  10. Zhang Z, Cai L, Cheng Q, Liu Z, Gu P (2016) A geometric error budget method to improve machining accuracy reliability of multi-axis machine tools. J Intell Manuf 30:1–25. https://doi.org/10.1007/s10845-016-1260-8

    Article  Google Scholar 

  11. Yang JX, Mayer JRR, Altintas Y (2015) A position independent geometric errors identification and correction method for five-axis serial machines based on screw theory. Int J Mach Tools Manuf 95:52–66. https://doi.org/10.1016/j.ijmachtools.2015.04.011

    Article  Google Scholar 

  12. Xiang ST, Altintas Y (2016) Modeling and compensation of volumetric errors for five-axis machine tools. Int J Mach Tools Manuf 101:65–78. https://doi.org/10.1016/j.ijmachtools.2015.11.006

    Article  Google Scholar 

  13. López de Lacalle LN, Lamikiz A (2009) Machine tools for high performance machining. London. https://doi.org/10.1007/978-1-84800-380-4

  14. López de Lacalle LN, Lamikiz A, Sánchez JA, Salgado MA (2004) Effects of tool deflection in the high-speed milling of inclined surfaces. Int J Adv Manuf Technol 24:621–631. https://doi.org/10.1007/s00170-003-1723-x

    Article  Google Scholar 

  15. López de Lacalle LN, Lamikiz A, Sánchez JA, Salgado MA (2007) Toolpath selection based on the minimum deflection cutting forces in the programming of complex surfaces milling. Int J Mach Tools Manuf 47:388–400. https://doi.org/10.1016/j.ijmachtools.2006.03.010

    Article  Google Scholar 

  16. Sang YC, Yao CL, Lv YQ, He GY (2020) An improved feedrate scheduling method for NURBS interpolation in five-axis machining. Precis Eng 64:70–90. https://doi.org/10.1016/j.precisioneng.2020.03.012

    Article  Google Scholar 

  17. Bohez ELJ (2002) Five-axis milling machine tool kinematic chain design and analysis. Int J Mach Tools Manuf 42:505–520. https://doi.org/10.1016/S0890-6955(01)00134-1

    Article  Google Scholar 

  18. Shi XL, Liu HL, Li H, Liu C, Tan G (2016) Comprehensive error measurement and compensation method for equivalent cutting forces. Int J Adv Manuf Technol 85:149–156. https://doi.org/10.1007/s00170-015-7789-4

    Article  Google Scholar 

  19. Suh SH, Cho JH, Hascoet JY (1996) Incorporation of tool deflection in tool path computation: simulation and analysis. J Manuf Syst 15:190–199. https://doi.org/10.1016/0278-6125(96)89571-9

    Article  Google Scholar 

  20. Armarego EJA, Deshpande NP (1991) Computerized end-milling force predictions with cutting models allowing for eccentricity and cutter deflections. CIRP Ann 40:25–29. https://doi.org/10.1016/S0007-8506(07)61926-X

    Article  Google Scholar 

  21. Salgado MA, López de Lacalle LN, Lamikiz A, Muñoa J, Sánchez JA (2005) Evaluation of the stiffness chain on the deflection of end-mills under cutting forces. Int J Mach Tools Manuf 45:727–739. https://doi.org/10.1016/j.ijmachtools.2004.08.023

    Article  Google Scholar 

  22. Uriarte L, Herrero A, Zatarain M, Santiso G, Lopéz de Lacalle LN, Lamikiz A, Albizuri J (2007) Error budget and stiffness chain assessment in a micromilling machine equipped with tools less than 0.3mm in diameter. Precis Eng 31:1–12. https://doi.org/10.1016/j.precisioneng.2005.11.010

    Article  Google Scholar 

  23. Du ZC, Zhang D, Hou HF, Liang SY (2017) Peripheral milling force induced error compensation using analytical force model and APDL deformation calculation. Int J Adv Manuf Technol 88:3405–3417. https://doi.org/10.1007/s00170-016-9052-z

    Article  Google Scholar 

  24. Ma WK, He GY, Zhu LM, Guo LZ (2016) Tool deflection error compensation in five-axis ball-end milling of sculptured surface. Int J Adv Manuf Technol 84:1421–1430. https://doi.org/10.1007/s00170-015-7793-8

    Article  Google Scholar 

  25. Raksiri C, Parnichkun M (2004) Geometric and force errors compensation in a 3-axis CNC milling machine. Int J Mach Tools Manuf 44:1283–1291. https://doi.org/10.1016/j.ijmachtools.2004.04.016

    Article  Google Scholar 

  26. Ding TC, Zhang S, Wang YW, Zhu XL (2010) Empirical models and optimal cutting parameters for cutting forces and surface roughness in hard milling of AISI H13 steel. Int J Adv Manuf Technol 51:45–55. https://doi.org/10.1007/s00170-010-2598-2

    Article  Google Scholar 

  27. Turyagyenda G, Wu H, Yang JG (2008) Progressive development of an absolute sensorless compensation system for cutting force-induced error. Int J Adv Manuf Technol 39:454–461. https://doi.org/10.1007/s00170-007-1239-x

    Article  Google Scholar 

  28. Yue CX, Liu XL, Ding YP, Liang SY (2018) Off-line error compensation in corner milling process. Proc Inst Mech Eng Part B J Eng Manuf 232:1172–1181. https://doi.org/10.1177/0954405416666901

    Article  Google Scholar 

  29. Soori M, Arezoo B, Habibi M (2017) Accuracy analysis of tool deflection error modeling in prediction of milled surfaces by a virtual machining system. Int J Comput Appl Technol 55:308. https://doi.org/10.1504/ijcat.2017.086015

    Article  Google Scholar 

  30. Shi YG, Zhao XY, Zhang HJ, Nie Y, Zhang D (2016) A new top-down design method for the stiffness of precision machine tools. Int J Adv Manuf Technol 83:1887–1904. https://doi.org/10.1007/s00170-015-7705-y

    Article  Google Scholar 

  31. Maeng S, Min S (2020) Simultaneous geometric error identification of rotary axis and tool setting in an ultra-precision 5-axis machine tool using on-machine measurement. Precis Eng 63:94–104. https://doi.org/10.1016/j.precisioneng.2020.01.007

    Article  Google Scholar 

  32. Lee K-I, Yang S-H (2013) Robust measurement method and uncertainty analysis for position-independent geometric errors of a rotary axis using a double ball-bar. Int J Precis Eng Manuf 14:231–239. https://doi.org/10.1007/s12541-013-0032-z

    Article  Google Scholar 

  33. Tsutsumi M, Tone S, Kato N, Sato R (2013) Enhancement of geometric accuracy of five-axis machining centers based on identification and compensation of geometric deviations. Int J Mach Tools Manuf 68:11–20. https://doi.org/10.1016/j.ijmachtools.2012.12.008

    Article  Google Scholar 

  34. Jiang XG, Cripps RJ (2015) A method of testing position independent geometric errors in rotary axes of a five-axis machine tool using a double ball bar. Int J Mach Tools Manuf 89:151–158. https://doi.org/10.1016/j.ijmachtools.2014.10.010

    Article  Google Scholar 

  35. Bi QZ, Huang ND, Sun C, Wang Y, Zhu L, Ding H (2015) Identification and compensation of geometric errors of rotary axes on five-axis machine by on-machine measurement. Int J Mach Tools Manuf 89:182–191. https://doi.org/10.1016/j.ijmachtools.2014.11.008

    Article  Google Scholar 

  36. Givi M, Mayer JRR (2014) Validation of volumetric error compensation for a five-axis machine using surface mismatch producing tests and on-machine touch probing. Int J Mach Tools Manuf 87:89–95. https://doi.org/10.1016/j.ijmachtools.2014.08.001

    Article  Google Scholar 

  37. Ibaraki S, Nagai Y, Otsubo H, Sakai Y, Morimoto S, Miyazaki Y, Department of Micro Engineering, Kyoto University, Otsubo Engineering Research Center, Fukuyama, Japan, Fukuda Corporation, Tokyo, Japan (2015) R-test analysis software for error calibration of five-Axis machine tools – application to a five-axis machine tool with two rotary axes on the tool side. Int J Autom Technol 9:387–395. https://doi.org/10.20965/ijat.2015.p0387

    Article  Google Scholar 

  38. Ibaraki S, Iritani T, Matsushita T (2012) Calibration of location errors of rotary axes on five-axis machine tools by on-the-machine measurement using a touch-trigger probe. Int J Mach Tools Manuf 58:44–53. https://doi.org/10.1016/j.ijmachtools.2012.03.002

    Article  Google Scholar 

  39. Angle E, Shreiner D (2011) Interactive computer graphics: a top-down approach with shader-based opengl. 6th ed. Addison-Wesley Publishing Company, USA. https://dl.acm.org/doi/book/10.5555/2018863

  40. ISO 230-2 (2014) Test code for machine tools — part 2: determination of accuracy and repeatability of positioning of numerically controlled axes. In: ISO. http://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/05/52/55295.html. Accessed 18 Nov 2019

  41. ISO/TR 230–9 (2005) Test code for machine tools — part 9: estimation of measurement uncertainty for machine tool tests according to series ISO 230, basic equations. In: ISO. http://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/03/91/39165.html. Accessed 18 Nov 2019

Download references

Acknowledgments

The authors gratefully acknowledge the financial support and the donation of the ROBONANO α-0iB to MIN LAB at UW-Madison from the FANUC Corporation, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangkee Min.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Maeng, S., Li, W. et al. Geometric- and force-induced errors compensation and uncertainty analysis of rotary axis in 5-axis ultra-precision machine tool. Int J Adv Manuf Technol 109, 841–856 (2020). https://doi.org/10.1007/s00170-020-05670-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-05670-7

Keywords

Navigation