Skip to main content
Log in

A physics-based approach to relate grinding process parameters to tribological behavior of ground surfaces

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In this study, we propose a new approach to investigate the influence of the grinding process parameters on the friction coefficient of the ground surface when in contact with another surface. This is achieved through the implementation of a physics-based model capable of predicting the friction coefficient. The model is based on hydrodynamic lubrication theory, solving a special case of the Navier-Stokes equations (Reynolds equation). The model will provide more insights to help optimize the grinding parameters and therefore surface texture, thus achieving the desired product functionality in term of tribological behavior. The model is being validated using reported experimental data. A case study on the influence of grinding wheel speed on the surface roughness and tribological behavior is performed. Based on the predicted results, we report an average friction coefficient in the transverse direction lower than the longitudinal. The proposed predictive approach demonstrates capacity in predicting the impact of grinding wheel speed on the friction coefficient, hydrostatic pressure, and average film thickness for a defined contact condition, hence more insights on the tribological functionality of a ground surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Benardos PG, Vosniakos G-C (2003) Predicting surface roughness in machining: a review. Int J Mach Tools Manuf 43:833–844. doi:10.1016/S0890-6955(03)00059-2

    Article  Google Scholar 

  2. Fergani O, Liang SY (2015) The effect of machining process thermo-mechanical loading on workpiece average grain size. Int J Adv Manuf Technol 80:21–29. doi:10.1007/s00170-015-6975-8

    Article  Google Scholar 

  3. Warren AW, Guo YB (2009) Characteristics of residual stress profiles in hard turned versus ground surfaces with and without a white layer. ASME. J Manuf Sci Eng 131(4):041004–041010. doi:10.1115/1.3159046

    Article  Google Scholar 

  4. Jawahir IS, Brinksmeier E, M’Saoubi R, Aspinwall DK, Outeiro JC, Meyer D et al (2011) Surface integrity in material removal processes: recent advances. CIRP Ann - Manuf Technol 60:603–626. doi:10.1016/j.cirp.2011.05.002

    Article  Google Scholar 

  5. Shao Y, Fergani O, Li B, Liang SY (2015) Residual stress modeling in minimum quantity lubrication grinding. Int J Adv Manuf Technol 83:743–751. doi:10.1007/s00170-015-7527-y

    Article  Google Scholar 

  6. Shao Y, Fergani O, Ding Z, Li B, Liang SY (2015) Experimental investigation of residual stress in minimum quantity lubrication grinding of AISI 1018 steel. ASME. J Manuf Sci Eng 138(1):011009–011007. doi:10.1115/1.4029956

    Article  Google Scholar 

  7. Li B, Ding Z, Xiao J, Liang SY (2016) Maraging steel 3J33 phase transformation during micro-grinding. Mater Lett 164:217–220. doi:10.1016/j.matlet.2015.10.162

    Article  Google Scholar 

  8. Tomanik E (2008) Friction and wear bench tests of different engine liner surface finishes. Tribol Int 41:1032–1038. doi:10.1016/j.triboint.2007.11.019

    Article  Google Scholar 

  9. Grabon W, Pawlus P, Sep J (2010) Tribological characteristics of one-process and two-process cylinder liner honed surfaces under reciprocating sliding conditions. Tribol Int 43:1882–1892. doi:10.1016/j.triboint.2010.02.003

    Article  Google Scholar 

  10. Demirci I, Mezghani S, Yousfi M, Zahouani H, El Mansori M (2012) The scale effect of roughness on hydrodynamic contact friction. Tribol Trans 55:705–712. doi:10.1080/10402004.2012.694990

    Article  Google Scholar 

  11. M Yousfi, S Mezghani, I Demirci, M El Mansori (2015) Smoothness and plateauness contributions to the running-in friction and wear of strati fi ed helical slide and plateau honed cylinder liners, 332–333: 1238–1247. doi:10.1016/j.wear.2014.11.011.

  12. Mezghani S, Demirci I, Yousfi M, El Mansori M (2013) Running-in wear modeling of honed surface for combustion engine cylinderliners. Wear 302:1360–1369. doi:10.1016/j.wear.2013.01.026

    Article  Google Scholar 

  13. Graziano AA, Ganguly V, Schmitz T, Yamaguchi H (2014) Control of lay on cobalt chromium alloy finished surfaces using magnetic abrasive finishing and its effect on wettability. ASME. J Manuf Sci Eng 136(3):031016–031018. doi:10.1115/1.4026935

    Article  Google Scholar 

  14. Sabri L, Mezghani S, El Mansori M, Zahouani H (2011) Multiscale study of finish-honing process in mass production of cylinder liner. Wear 271:509–513. doi:10.1016/j.wear.2010.03.026

    Article  Google Scholar 

  15. El Mansori M, Mezghani S, Sabri L, Zahouani H (2010) On concept of process signature in analysis of multistage surface formation. Surf Eng 26:216–223. doi:10.1179/174329409X455412

    Article  Google Scholar 

  16. Yousfi M, Mezghani S, Demirci I, El Mansori M (2013) Study on the relevance of some of the description methods for plateau-honed surfaces. Surf Topogr Metrol Prop 2:014006:1–014006:7. doi:10.1088/2051-672X/2/1/014006

    Article  Google Scholar 

  17. Decencière E, Jeulin D (2001) Morphological decomposition of the surface topography of an internal combustion engine cylinder to characterize wear. Wear 249:482–488. doi:10.1016/S0043-1648(01)00579-8

    Article  Google Scholar 

  18. M Yousfi, S Mezghani, I Demirci, M El Mansori (2014) Comparative study between 2D and 3D characterization methods for cylinder liner plateau honed surfaces, in: Proc. NAMRI/SME, Vol. 42

  19. Yousfi M, Mezghani S, Demirci I, El Mansori M (2016) Tribological performances of elliptic and circular texture patterns produced by innovative honing process. Tribol Int. doi:10.1016/j.triboint.2016.01.049

    Google Scholar 

  20. Rosen B-G, Anderberg C, Pawlus P, Thomas T (2009) Alternative descriptions of roughness for cylinder liner production. J Mater Process Technol 209:1936–1942. doi:10.1016/j.jmatprotec.2008.04.059

    Article  Google Scholar 

  21. Rosen B-G, Anderberg C, Ohlsson R (2008) Parameter correlation study of cylinder liner roughness for production and quality control. Proc Inst Mech Eng Part B J Eng Manuf 222:1475–1487. doi:10.1243/09544054JEM1201

    Article  Google Scholar 

  22. Pawlus P, Cieslak T, Mathia T (2009) The study of cylinder liner plateau honing process. J Mater Process Technol 209:6078–6086. doi:10.1016/j.jmatprotec.2009.04.025

    Article  Google Scholar 

  23. AEH Love (1944) A treatise on the Mathematical Theory of Elasticity, 4th edition, dover, New York

  24. Ehret P, Dowson D, Taylor CM (1998) On lubricant transport conditions in elastohydrodynamic conjunctions. Proc R Soc A Math Phys Eng Sci 454:763–787

    Article  MATH  Google Scholar 

  25. Dowson D, Higginson GR (1966) http://books.google.fr/books/about/Elasto_hydrodynamic_lubrication.html?id=HuMuAAAAIAAJ&pgis=1 Elasto-hydrodynamic lubrication, the fundamentals of roller and gear lubrication. Pergamon Press, Oxford

    Google Scholar 

  26. Roelands CJA (1966) Correlational aspects of the viscosity-temperature-pressure relationship of lubricating oils. PhD thesis, Technical University Delft

  27. Ren N, Zhu D, Chen WW, Liu Y, Wang QJ (2009) A three-dimensional deterministic model for rough surface line-contact EHL problems. J Tribol 131:011501:1–011501:9. doi:10.1115/1.2991291

    Article  Google Scholar 

  28. Madanchi N, Winter M, Herrmann C (2015) Cutting fluid drag-out and exhaust air in grinding processes: influence on the eco-efficiency. Procedia CIRP 29:329–334. doi:10.1016/j.procir2015.02.054

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Fergani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fergani, O., Yousfi, M., Ding, Z. et al. A physics-based approach to relate grinding process parameters to tribological behavior of ground surfaces. Int J Adv Manuf Technol 91, 4151–4161 (2017). https://doi.org/10.1007/s00170-017-0111-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-0111-x

Keywords

Navigation