Skip to main content
Log in

The effect of combining high-intensity ultrasonic vibration with ECAE process on the process parameters and mechanical properties and microstructure of aluminum 1050

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Equal channel angular extrusion, as one most common severe plastic deformation method for producing ultra-fine grain materials, has some limitations such as high forming load, high friction forces, microstructure inhomogeneity, and a large number of passes required for obtaining fine-grained structure. The main goal of this research is investigation on the effect of using high-intensity ultrasonic vibration directly in the plastic deformation zone during the ECAE process of commercially pure aluminum 1050 to improve process limitations. By combining ultrasonic vibration with the ECAE, the sample with nearly equiaxed grains and average size ∼2 μm was achieved just after one pass more effective than two passes of conventional ECAE via routes C and Bc. Accordingly, the samples with 22 % higher hardness, 10 % more compressive strength, and also 30 % lower required forming load were attained during ultrasonic-assisted ECAE with applied vibration amplitude 15 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hall EO (1951) The deformation and ageing of mild steel: III discussion of results. Proc Phys Soc 64:747–753

    Article  Google Scholar 

  2. Segal VM (1995) Materials processing by simple shear. Mater Sci Eng A 197:157–164. doi:10.1016/0921-5093(95)09705-8

    Article  Google Scholar 

  3. Valiev RZ, Langdon TG (2006) Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog Mater Sci 51:881–981. doi:10.1016/j.pmatsci.2006.02.003

    Article  Google Scholar 

  4. Siddiq A, El Sayed T (2012) Ultrasonic-assisted manufacturing processes: variational model and numerical simulations. Ultrasonics 52:521–529. doi:10.1016/j.ultras.2011.11.004

    Article  Google Scholar 

  5. Bagherzadeh S, Abrinia K, Han Q (2016) Ultrasonic assisted equal channel angular extrusion (UAE) as a novel hybrid method for continuous production of ultra-fine grained metals. Mater Lett 169:90–94. doi:10.1016/j.matlet.2016.01.095

    Article  Google Scholar 

  6. Bagherzadeh S, Abrinia K (2015) Effect of ultrasonic vibration on compression behavior and microstructural characteristics of commercially pure aluminum. J Mater Eng Perform. doi:10.1007/s11665-015-1730-8

    Google Scholar 

  7. Langenecker B (1966) Effects of ultrasound on deformation characteristics of metals. IEEE Trans Sonics Ultrason SU-13:1–8

    Article  Google Scholar 

  8. Yin F, Hu S, Hua L, Wang X, Suslov S, Han Q (2014) Surface nanocrystallization and numerical modeling of low carbon steel by means of ultrasonic shot peening. Metall Mater Trans A Phys Metall Mater Sci 46:1253–1261. doi:10.1007/s11661-014-2689-z

    Article  Google Scholar 

  9. Jimma T, Kasuga Y, Iwaki N, Miyazawa O, Mori E, Ito K, Hatano H (1998) An application of ultrasonic vibration to the deep drawing process. J Mater Process Technol 80–81:406–412. doi:10.1016/S0924-0136(98)00195-2

    Article  Google Scholar 

  10. Bunget C, Ngaile G (2011) Influence of ultrasonic vibration on micro-extrusion. Ultrasonics 51:606–616. doi:10.1016/j.ultras.2011.01.001

    Article  Google Scholar 

  11. Han Q, Xu C, Jian X (2007) Method of producing nanostructured metals using high-intensity ultrasonic vibration. 1–5

  12. Wen T, Wei L, Chen X, Pei C (2011) Effects of ultrasonic vibration on plastic deformation of AZ31 during the tensile process. Int J Miner Metall Mater 18:70–76. doi:10.1007/s12613-011-0402-4

    Article  Google Scholar 

  13. Siu KW, Ngan AHW, Jones IP (2011) New insight on acoustoplasticity–ultrasonic irradiation enhances subgrain formation during deformation. Int J Plast 27:788–800. doi:10.1016/j.ijplas.2010.09.007

    Article  MATH  Google Scholar 

  14. Liu Y, Suslov S, Han Q, Xu C, Hua L (2012) Microstructure of the pure copper produced by upsetting with ultrasonic vibration. Mater Lett 67:52–55. doi:10.1016/j.matlet.2011.08.086

    Article  Google Scholar 

  15. Han Q (2015) Ultrasonic processing of materials. Metall Mater Trans B 46:1603–1614. doi:10.2172/859314

    Article  Google Scholar 

  16. Djavanroodi F, Ahmadian H, Koohkan K, Naseri R (2013) Ultrasonic assisted-ECAP. Ultrasonics 53:1089–1096. doi:10.1016/j.ultras.2013.02.003

    Article  Google Scholar 

  17. Liu Y, Suslov S, Han Q, Hua L, Xu C (2013) Comparison between ultrasonic vibration-assisted upsetting and conventional upsetting. Metall Mater Trans A 44:3232–3244. doi:10.1007/s11661-013-1651-9

    Article  Google Scholar 

  18. Siddiq A, El Sayed T (2011) Acoustic softening in metals during ultrasonic assisted deformation via CP-FEM. Mater Lett 65:356–359. doi:10.1016/j.matlet.2010.10.031

    Article  Google Scholar 

  19. Yao Z, Kim G, Wang Z, Faidley L, Zou Q, Mei D, Chen Z (2012) Acoustic softening and residual hardening in aluminum: modeling and experiments. Int J Plast 1–13. doi:10.1016/j.ijplas.2012.06.003

  20. Hess DP, Soom A, Kim CH (1992) Normal vibrations and friction at a Hertzian contact under random excitation: theory and experiments. J Sound Vib 153:491–508. doi:10.1016/0022-460X(92)90378-B

    Article  MATH  Google Scholar 

  21. Kumar V, Hutchings I (2004) Reduction of the sliding friction of metals by the application of longitudinal or transverse ultrasonic vibration. Tribol Int 37:833–840. doi:10.1016/j.triboint.2004.05.003

    Article  Google Scholar 

  22. Blitz J (1971) Ultrasonics: methods and applications. Newnes-Butterworth, p 160

  23. El-Danaf EA (2008) Mechanical properties and microstructure evolution of 1050 aluminum severely deformed by ECAP to 16 passes. Mater Sci Eng A 487:189–200. doi:10.1016/j.msea.2007.10.013

    Article  Google Scholar 

  24. Wonsiewicz BC, Chin GY, Hart RR (1971) Lateral constraints in plane strain compression of single crystals. Metall Mater Trans B 2:2093–2096. doi:10.1007/BF02917536

    Article  Google Scholar 

  25. García-Infanta JM, Swaminathan S, Carreño F, Ruano OA, McNelley TR (2008) Grain shape and microstructural evolution during equal channel angular pressing. Scr Mater 58:17–20. doi:10.1016/j.scriptamat.2007.09.007

    Article  Google Scholar 

  26. Kim KJ, Yang DY, Yoon JW (2010) Microstructural evolution and its effect on mechanical properties of commercially pure aluminum deformed by ECAE (equal channel angular extrusion) via routes A and C. Mater Sci Eng A 527:7927–7930. doi:10.1016/j.msea.2010.08.084

    Article  Google Scholar 

  27. El-Danaf EA, Soliman MS, Almajid AA, El-Rayes MM (2007) Enhancement of mechanical properties and grain size refinement of commercial purity aluminum 1050 processed by ECAP. Mater Sci Eng A 458:226–234. doi:10.1016/j.msea.2006.12.077

    Article  Google Scholar 

  28. Langdon TG (2007) The principles of grain refinement in equal-channel angular pressing. Mater Sci Eng A 462:3–11

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Bagherzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagherzadeh, S., Abrinia, K., Liu, Y. et al. The effect of combining high-intensity ultrasonic vibration with ECAE process on the process parameters and mechanical properties and microstructure of aluminum 1050. Int J Adv Manuf Technol 88, 229–240 (2017). https://doi.org/10.1007/s00170-016-8779-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-8779-x

Keywords

Navigation