Skip to main content
Log in

A new sheet metal forming system based on the incremental punching, part 1: modeling and simulation

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

With the increasing demand for low-volume and customer-made products, incremental sheet metal forming (ISMF), a dieless sheet metal forming process, has become one of the leading R&D topics in the industry today. We developed a new ISMF system based on incremental punching: a sheet metal is formed into the final shape by a series of small incremental punches. This paper is the first of the two papers and is focused on the theory. The theoretical model consists of two parts. First, a mechanics model is developed to predict the final shape based on the minimum energy principle. In this model, an initial geometric surface is formed by the punch positions; then based on the fact that the energy will drive the sheet metal to attain its lowest energy position, the geometry of the final shape is derived. Then, another model is developed to predict the strain and stress distributions of the part using the inverse finite element modeling (FEM), also called the one-step FEM. Several numerical examples are provided. In the second part of the two papers, the design and the building of an incremental punching machine, as well as experiment results are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marciniak Z, Duncan JL, Hu SJ (2002) Mechanics of sheet metal forming. Butterworth Heinemann, Oxford

    Google Scholar 

  2. Geiger M, Merklein M, Pitz M (2004) Laser and forming technology—an idea and the way of implementation. J Mater Process Technol 151:3–11. doi:10.1016/j.jmatprotec.2004.04.004

    Article  Google Scholar 

  3. Kim H, Nargundkar N, Altan T (2007) Prediction of bend allowance and springback in air bending. J Manuf Sci Eng 129:342–351. doi:10.1115/1.2673527

    Article  Google Scholar 

  4. Cai ZY, Li MZ, Chen XD (2006) Digitized die forming system for sheet metal and springback minimizing technique. Int J Adv Manuf Technol 28:1089–1096. doi:10.1007/s00170-004-2459-y

    Article  MathSciNet  Google Scholar 

  5. Wang T, Platts MJ, Levers A (2006) A process model for shot peen forming. J Mater Process Technol 172:159–162. doi:10.1016/j.jmatprotec.2005.09.006

    Article  Google Scholar 

  6. Jeswiet J, Geiger M, Engel U, Kleiner M, Schikorra M, Duflou J, Neugebauer R, Bariani P, Bruschi S (2008) Metal forming progress since 2000. CIRP Manuf Sci Technol 1:2–17. doi:10.1016/j.cirpj.2008.06.005

    Article  Google Scholar 

  7. Allwood JM, Utsunomiya H (2006) A survey of flexible forming processes in Japan. Int J Mach Tool Manuf 46:1939–1960. doi:10.1016/j.ijmachtools.2006.01.034

    Article  Google Scholar 

  8. Amino H, Ro G (2001) Dieless NC forming. J Jpn Soc Technol Plast 42:69–73

    Google Scholar 

  9. Schafer T, Schraft RD (2005) Incremental sheet metal forming by industrial robots. Rapid Prototyping J 11:278–286. doi:10.1108/13552540510623585

    Article  Google Scholar 

  10. Levers A, Prior A (1998) Finite element analysis of shot peening. J Mater Process Technol 80–81:304–308. doi:10.1016/S0924-0136(98)00188-5

    Article  Google Scholar 

  11. Hong T, Ooi JY, Shaw B (2008) A numerical simulation to relate the shot peening parameters to the induced residual stresses. Eng Fail Anal 15:1097–1110. doi:10.1016/j.engfailanal.2007.11.017

    Article  Google Scholar 

  12. Strano M, Ruggiero M, Carrino L (2005) Technological representation of forming limits for negative incremental forming of thin aluminum sheets. J Manuf Process 7:122–129. doi:10.1016/S1526-6125(05)70089-X

    Article  Google Scholar 

  13. Yamashita M, Gotoha M, Atsumia S (2008) Numerical simulation of incremental forming of sheet metal. J Mater Process Technol 199:163–172. doi:10.1016/j.jmatprotec.2007.07.037

    Article  Google Scholar 

  14. Pohlak M, Kuttner R, Majak J, Karjust K, Sutt A (2004) Simulation of incremental forming of sheet metal products. 4th Int DAAAM Conf, Tallinn, Estonia

  15. Callegari M, Amodio D, Ceretti E, Giardini C (2007) Sheet incremental forming: advantages of pobotised cells vs. CNC machines. Industrial Robotics: Programming, Simulation and Application, ARS, Vienna, pp 493–514

  16. Iseki H (2001) An approximate deformation analysis and FEM analysis for the incremental bulging of sheet metal using a spherical roller. J Mater Process Technol 111:150–154. doi:10.1016/S0924-0136(01)00500-3

    Article  Google Scholar 

  17. Silva MB, Skjoedt M, Martins PAF, Bay N (2008) Revisiting the fundamentals of single point incremental forming by means of membrane analysis. Int J Mach Tool Manuf 48:73–83. doi:10.1016/j.ijmachtools.2007.07.004

    Article  Google Scholar 

  18. Martins P, Bay N, Skjoedt M, Silva M (2008) Theory of single point incremental forming. CIRP Ann-Manuf Technol 57:247–252

    Article  Google Scholar 

  19. Raithatha A, Jackson K, Duncan S, Allwood J (2006) New method for modeling plastic deformation in incremental sheet forming. Proc IEEE Int Conf Cntrl App, Munich, Germany

  20. Tang BT, Zhao Z, Lu XY, Wang ZQ, Zhao XW, Chen SY (2007) Fast thickness prediction and blank design in sheet metal forming based on an enhanced inverse analysis method. Int J Mech Sci 49:1018–1028. doi:10.1016/j.ijmecsci.2007.02.003

    Article  Google Scholar 

  21. Hu S, Li YF, Ju T, Zhu X (2001) Modifying the shape of NURBS surfaces with geometric constraints. Comput Aided Design 33:903–912. doi:10.1016/j.ijmecsci.2006.01.007

    Article  Google Scholar 

  22. Batoz JL, Guo YQ, Mercier F (1998) The inverse approach with simple triangular shell elements for large strain prediction of sheet metal forming parts. J Eng Comp 15(7):864–892. doi:10.1108/02644409810236894

    Article  MATH  Google Scholar 

  23. Lee CH, Huh H (1998) Blank design and strain estimates for sheet metal forming processes by a finite element inverse approach with initial guess of linear deformation. J Mater Process Technol 82(1–3):145–155. doi:10.1016/S0924-0136(98)00034-X

    Article  Google Scholar 

  24. Huang Y, Chen YP, Du R (2006) A new approach to solve key issues in multi-step inverse finite element method in sheet metal stamping. Int J Mech Sci 48(6):591–600. doi:10.1016/j.ijmecsci.2006.01.007

    Article  MATH  Google Scholar 

  25. Lan J, Dong XH, Li ZG (2005) Inverse finite element approach and its application in sheet metal forming. J Mater Process Technol 170(3):624–631. doi:10.1016/j.jmatprotec.2005.06.043

    Article  Google Scholar 

  26. Naceur H, Delamiere A, Batoz JL (2004) Some improvements on the optimum process design in deep drawing using the inverse approach. J Mater Process Technol 146(2):250–262. doi:10.1016/j.jmatprotec.2003.11.015

    Article  Google Scholar 

  27. Becker AA (2004) An introduction to finite element method. Professional Engineering Publishing, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanxin Luo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, Y., He, K. & Du, R. A new sheet metal forming system based on the incremental punching, part 1: modeling and simulation. Int J Adv Manuf Technol 51, 481–491 (2010). https://doi.org/10.1007/s00170-010-2634-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-010-2634-2

Keywords

Navigation