Skip to main content
Log in

Local stability effects of plasma actuation on a zero pressure gradient boundary layer

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

The effects of plasma actuation in a flat plate boundary layer with zero pressure gradient have been simulated. Based on these simulations, non-dimensional parameters and a combined wall jet/boundary layer model of the velocity profile have been developed. A parametric study using local linear stability analysis has been performed to examine the hydrodynamic stability of the velocity profiles created through this model. Convective and absolute instability mechanisms are found to be important, some of which have not been previously documented. Neutral stability curves have been computed for the different instabilities, and when put in terms of the shape factor, they still compare favorably with reported canonical results, indicating that the critical Reynolds number is primarily a function of the shape factor. These results are also discussed in relation to existing experimental results as well as with respect to their implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roth, J.R., Sherman, D.M., Wilkinson, S.P.: AIAA Paper 1998-328 (1998)

  2. Moreau E.: Airflow control by non-thermal plasma actuators. J. Phys. D Appl. Phys. 40, 605 (2007)

    Article  Google Scholar 

  3. Jayaraman B., Thakur S., Shyy W.: Modeling of fluid dynamics and heat transfer induced by dielectric barrier plasma actuator. J. Heat Transf. 129, 517 (2007)

    Article  Google Scholar 

  4. Grundmann S., Tropea C.: Active cancellation of artificially introduced Tollmien–Schlichting waves using plasma actuators. Exp. Fluids 44, 795 (2008)

    Article  Google Scholar 

  5. Grundmann, S., Tropea, C.: In: 46th AIAA Aerospace Sciences Meeting (2008)

  6. Grundmann S., Tropea C.: Experimental damping of boundary-layer oscillations using DBD plasma actuators. Int. J. Heat Fluid Flow 30, 394 (2009)

    Article  Google Scholar 

  7. Gibson, B.A., Arjomandi, M., Kelso, R.M.: The response of a flat plate boundary layer to an orthogonally arranged dielectric barrier discharge actuator. J. Phys. D Appl. Phys. 45(2), 025202 (2012)

    Google Scholar 

  8. Duchmann, A., Kurz, A., Widmann, A., Grundmann, S., Tropea, C.: In: 50th AIAA Aerospace Sciences Meeting (2012)

  9. Duchmann, A., Simon, B., Magin, P., Tropea, C., Grundmann, S.: In: 51st AIAA Aerospace Sciences Meeting (2013)

  10. Albrecht, T., Grundmann, R., Mutschke, G., Gerbeth, G.: On the stability of the boundary layer subject to a wall–parallel Lorentz force. Phys. Fluids 18(9), 098103 (2006)

    Google Scholar 

  11. Duchmann, A., Reeh, A., Quadros, R., Kriegseis, J., Tropea, C.: In: Seventh IUTAM Symposium on Laminar-Turbulent Transition (2010)

  12. Duchmann, A., Tropea, C., Grundmann, S.: In: 51st AIAA Aerospace Sciences Meeting (2013)

  13. Riherd, M., Roy, S.: In: 51st AIAA Aerospace Sciences Meeting (2013)

  14. Séraudie, A., Vermeersch, O., Arnal, D.: In: 29th AIAA Applied Aerodynamics Conference (2011)

  15. Wazzan A.R., Gazley C., Smith A.M.O.: Tollmien-Schlichting waves and transition: heated and adiabatic wedge flows with application to bodies of revolution. Prog. Aerosp. Sci. 18, 351 (1979)

    Article  Google Scholar 

  16. Rizzeta D.P., Visbal M.R., Morgan P.E.: A high-order compact finite-difference scheme for large-eddy simulation of active flow control. Prog. Aerosp. Sci. 44, 397 (2008)

    Article  Google Scholar 

  17. Shyy W., Jayaraman B., Andersson A.: Modeling of glow discharge-induced fluid dynamics. J. Appl. Phys. 92, 6434 (2002)

    Article  Google Scholar 

  18. Roy S.: Flow actuation using radio frequency in partially ionized collisional plasmas. Appl. Phys. Lett. 86(10), 1 (2005)

    Article  Google Scholar 

  19. Boeuf, J.P., Lagmich, Y., Unfer, T., Callegar, T., Pitchford, L.C.: Electrohydrodynamic force in dielectric barrier discharge plasma actuators. J. Phys. D Appl. Phys. 40(3), 652–662 (2007)

    Google Scholar 

  20. Kotsonis, M., Ghaemi, S., Veldhuis, L., Scarano, F.: Measurement of the body force field of plasma actuators. J. Phys. D Appl. Phys. 44 (2011)

  21. Kriegseis, J., Schwartz, C., Duchmann, A., Grundmann, S., Tropea, C.: In: 50th AIAA Aerospace Sciences Meeting, Nashville, TN (2012)

  22. Singh, K.P., Roy, S.: Force approximation for a plasma actuator operating in atmospheric air. J. Appl. Phys. 103(1), 013305 (2008)

    Google Scholar 

  23. Maden, I., Kriegseis, J., Maduta, R., Jakirlíc, S., Schwartz, C., Grundmann, S., Tropea, C.: In: 20th Annual Conference of the CFD Community of Canada, Canmore (2012)

  24. Opaits, D., Zaidi, S., Shneider, M., Likhanskii, A., Edwards, M., Macheret, S.: AIAA Paper 2010-0469 (2010)

  25. Blasius, H.: Grenzschichten in Flüssigkeiten mit kleiner Reibung. Z. Math. Phys. 56(1), 1–37 (1908)

    Google Scholar 

  26. Glauert M.B.: The wall jet. J. Fluid Mech. 1, 625 (1956)

    Article  MathSciNet  Google Scholar 

  27. Briggs, R.J.: Electron-Stream Interaction with Plasma. MIT Press, Cambridge, MA (1964)

  28. Bers, A.: Linear Waves and Instabilities. In: Plasma Research Report. Research Laboratory of Electronics, Massachusetts Institute of Technology (1972)

  29. Hammond D.A., Redekopp L.G.: Local and global instability properties of separation bubbles. Eur. J. Mech. B Fluids 17(2), 145–164 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrata Roy.

Additional information

Communicated by O. Zikanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riherd, M., Roy, S. & Balachandar, S. Local stability effects of plasma actuation on a zero pressure gradient boundary layer. Theor. Comput. Fluid Dyn. 28, 65–87 (2014). https://doi.org/10.1007/s00162-013-0302-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-013-0302-5

Keywords

Navigation