Skip to main content
Log in

Vortex ring velocity and minimum separation in an infinite train of vortex rings generated by a fully pulsed jet

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

A pulsed jet with a period of no flow between pulses (i.e., a fully pulsed jet) produces a multiplicity of vortex rings whose characteristics are determined by the jet pulsing parameters. The present study analyzes the case of impulsively initiated and terminated jet pulses in the limit of equal pulse duration and period to determine the minimum possible vortex ring separation obtainable from a fully pulsed jet. The downstream character of the flow is modeled as an infinite train of thin, coaxial vortex rings. Assuming inviscid flow and matching the circulation, impulse, kinetic energy, and frequency of the jet and vortex ring train allow the properties of the vortex ring train to be determined in terms of the ratio of jet slug length-to-diameter ratio (L/D) used for each pulse. The results show the minimum ring separation may be made arbitrarily small as L/D is decreased and the corresponding total ring velocity remains close to half the jet velocity for L/D < 4, but the thin-ring assumption is violated for L/D > 1.5. The results are discussed in the context of models of pulsed-jet propulsion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bremhorst K., Hollis P.G.: Velocity field of an axisymmetric pulsed, subsonic air jet. AIAA J. 28, 2043–2049 (1990)

    Article  Google Scholar 

  2. Choutapalli, I.M.: An experimental study of a pulsed jet ejector. Ph.D. Dissertation, Florida State University, Tallahassee, FL (2006)

  3. Fraenkel L.E.: Examples of steady vortex rings of small cross-section in an ideal fluid. J. Fluid Mech. 51, 119–135 (1972)

    Article  MATH  Google Scholar 

  4. Gharib M., Rambod E., Shariff K.: A universal time scale for vortex ring formation. J. Fluid Mech. 360, 121–140 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Krueger P.S., Gharib M.: The significance of vortex ring formation to the impulse and thrust of a starting jet. Phys. Fluids 15, 1271–1281 (2003)

    Article  MathSciNet  Google Scholar 

  6. Krueger P.S., Gharib M.: Thrust augmentation and vortex ring evolution in a fully pulsed jet. AIAA J. 43, 792–801 (2005)

    Article  Google Scholar 

  7. Lamb H.: Hydrodynamics, pp. 236–239. Dover, New York (1932)

    MATH  Google Scholar 

  8. Levy H., Forsdyke A.G.: The stability of an infinite system of circular vortices. Proc. R. Soc. London A 114, 594–604 (1927)

    Article  Google Scholar 

  9. Mohseni K., Gharib M.: A model for universal time scale of vortex ring formation. Phys. Fluids 10, 2436–2438 (1998)

    Article  Google Scholar 

  10. Reynolds W.C., Parekh D.E., Juvet P.J.D., Lee M.J.D.: Bifurcating and blooming jets. Annu. Rev. Fluid Mech. 35, 295–315 (2003)

    Article  MathSciNet  Google Scholar 

  11. Shariff, K., Leonard, A., Ferziger, J.H.: Dynamics of a class of vortex rings. NASA TM-102257 (1989)

  12. Shariff K., Leonard A.: Vortex rings. Annu. Rev. Fluid Mech. 24, 235–279 (1992)

    Article  MathSciNet  Google Scholar 

  13. Siekmann J.: On a pulsating jet from the end of a tube, with application to the propulsion of certain aquatic animals. J. Fluid Mech. 15, 399–418 (1963)

    Article  MathSciNet  Google Scholar 

  14. Taylor G.I.: Formation of a vortex ring by giving an impulse to a circular disk and then dissolving it away. J. Appl. Phys. 24, 104 (1953)

    Article  MathSciNet  Google Scholar 

  15. Vermeulen P.J., Rainville P., Ramesh V.: Measurements of the entrainment coefficient of acoustically pulsed axisymmetric free air jets. J. Eng. Gas Turbul. Power 114, 409–415 (1992)

    Article  Google Scholar 

  16. Weihs D.: Periodic jet propulsion of aquatic creatures. Fortschritte der Zoologie 24, 171–175 (1977)

    Google Scholar 

  17. Yamada H., Matsui T.: Mutual slip-through of a pair of vortex rings. Phys. Fluids 22, 1245–1249 (1979)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul S. Krueger.

Additional information

Communicated by H. Aref

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krueger, P.S. Vortex ring velocity and minimum separation in an infinite train of vortex rings generated by a fully pulsed jet. Theor. Comput. Fluid Dyn. 24, 291–297 (2010). https://doi.org/10.1007/s00162-009-0130-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-009-0130-9

Keywords

PACS

Navigation