Skip to main content
Log in

An improved method for calculating flow past flapping and hovering airfoils

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

A method is reported here for calculating unsteady aerodynamics of hovering and flapping airfoil for two-dimensional flow via the following improved methodologies: (a) a correct formulation of the problem using stream function (ψ) and vorticity (ω) as dependent variables; (b) calculating loads and moment by a new method to solve the governing pressure Poisson equation (PPE) in a truncated part of the computational domain on a nonstaggered grid; (c) accurate solution using high accuracy compact difference scheme for the vorticity transport equation (VTE) and (d) accelerating the computations by using a high-order filter after each time step of integration. These have been used to solve Navier–Stokes equation for flow past flapping and hovering NACA 0014 and 0015 airfoils at typical Reynolds numbers relevant to the study of unsteady aerodynamics of micro air vehicle (MAV) and insect/bird flight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rozhdestvensky, K.V., Ryzhov, V.A.: Aerohydrodynamics of flapping-wing propulsors. Prog. Aerospace Sci. 39, 585–633 (2003)

    Article  ADS  Google Scholar 

  2. Ho, S., Nassef, H., Pornsinsirirak, N., Tai, Y.-C., Ho, C.M.: Unsteady aerodynamics and flow control for flapping wing flyers. Prog. Aerosp. Sci. 39, 635–681 (2003)

    Article  Google Scholar 

  3. Lian, Y., Shyy, W., Viieru, D., Zhang, B.: Membrane wing aerodynamics for micro air vehicles. Prog. Aerosp. Sci. 39, 425–465 (2003)

    Article  Google Scholar 

  4. Sane, S.P.: The aerodynamics of insect flight. J. Exp. Biol. 206, 4191–4208 (2003)

    Article  Google Scholar 

  5. Norberg, U.M.: Vertebrate flight: mechanics, physiology, morphology, ecology and evolution. Springer, New York (1990)

  6. Pennycuick, C.J.: Actual and ‘optimum’ flight speeds: field data reassessed. J. Exp. Biol. 200, 2355–2361 (1997)

    Google Scholar 

  7. Tobalske, B.W., Dial, K.P.: Flight kinematics of black-billed magpies and pigeons over a wide range of speed. J. Exp. Biol. 199, 263–280 (1996)

    Google Scholar 

  8. Nachtigall, W.: Insects in flight. Mc-Graw Hill, New York (1974)

    Google Scholar 

  9. Freymuth, P.: Thrust generation by an airfoil in hover modes. Exp. Fluids 9, 17–24 (1990)

    Article  Google Scholar 

  10. DeLaurier, J.D.: An aerodynamic model for flapping wing flight. Aeronaut. J. 97, 125–130 (1993)

    Google Scholar 

  11. Spedding, G.R.: The aerodynamics of flight. Adv. Comp. Env. Physiol. 11, 51–111 (1992)

    Google Scholar 

  12. Sun, M., Tang, J.: Lift and power requirements of hovering flight in Drosophila virilis. J. Exp. Biol. 205, 2413–2427 (2002)

    Google Scholar 

  13. Rogers, S.E., Kwak, D.: Upwind differencing scheme for the time-accurate incompressible Navier–Stokes equation. AIAA J. 28, 253–262 (1990)

    Article  MATH  ADS  Google Scholar 

  14. Sengupta, T.K., Dipankar, A.: A comparative study of time advancement methods for solving Navier–Stokes equations. J. Sci. Comp. 21(2), 225–250 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Wang, Z.J.: Vortex shedding and frequency selection in flapping flight. J. Fluid Mech. 410, 323–341 (2000)

    Article  MATH  ADS  Google Scholar 

  16. Gustafson, K., Leben, R.: Computation of dragonfly aerodynamics. Comput. Phys. Commun. 65, 121–132 (1991)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Gustafson, K., Leben, R., McArthur, J.: Lift and thrust generation by an airfoil in hover modes, Comput. Fluid Dyn. J. 1(1), 47–57 (1992)

    Google Scholar 

  18. Weinan, E., Liu, J.-G.: Essentially compact schemes for unsteady viscous incompressible flows. J. Comput. Phys. 126, 122 (1996)

    Google Scholar 

  19. Roache, P.J.: Computational fluid dynamics. Hermosa Publishers. New Mexcio, USA (1976)

  20. Sengupta, T.K., Kasliwal, A., De, S., Nair, M.: Temporal flow instability for Magnus-Robins effect at high rotation rates. J. Fluids Struct. 17, 941–953 (2003)

    Article  ADS  Google Scholar 

  21. Nair, M.T., Sengupta, T.K.: Orthogonal grid generation for Navier–Stokes computations. Int. J. Num. Meth. Fluids 28, 215–224 (1998)

    Article  MATH  Google Scholar 

  22. Abdallah, S.: Numerical solutions for the pressure Poisson equation with Neumann boundary conditions using a nonstaggered grid-I. J. Comput. Phys. 70, 182–192 (1987)

    Article  MATH  ADS  Google Scholar 

  23. Grescho, P.M., Sani, R.L.: On pressure boundary conditions for the incompressible Navier–Stokes equation. Int. J. Num. Meth. Fluids 7, 1111–1145 (1987)

    Article  Google Scholar 

  24. Clayssen, J.R., Platte, R.B., Bravo, E.: Simulation in primitive variables of incompressible flow with pressure Neumann condition. Int. J. Num. Meth. Fluids 30, 1009–1026 (1999)

    Article  Google Scholar 

  25. Jones, K.D., Castro, B.M., Mahmoud, O., Pollard, S.J., Platzer, M.F., Neef, M.F., Gonet, K., Hummel, D.: A collaborative numerical and experimental investigation of flapping-wing propulsion. AIAA Paper No. AIAA-2002–0706 (2002)

  26. McCroskey, W.J.: Unsteady airfoils. Ann. Rev. Fluid Mech., 24, 285–311 (1982)

    Article  ADS  Google Scholar 

  27. Carr, L.W.: Progress in analysis and prediction of dynamic stall. J. Aircraft 25(1), 6–17 (1988)

    Google Scholar 

  28. Bousman, W.G.: Airfoil dynamic stall and rotorcraft maneuverability. NASA TM-2000–209601 (2000)

  29. Berton, E., Maresca, C., Favier, D.: A new experimental method for determining local airloads on rotor blades in forward flight. Exp. Fluids 37(3), 455–457 (2004)

    Article  Google Scholar 

  30. Schneider, G.E., Zedan, M.: A modified strongly implicit procedure for the numerical solution of field problems. J. Numer. Heat Transf. 4, 1–19 (1981)

    Article  ADS  Google Scholar 

  31. Sengupta, T.K.: Fundamentals of CFD. Universities Press. Hyderabad, India (2004)

  32. Sengupta, T.K., Guntaka, A., Dey, S.: Navier–Stokes solution by new compact scheme for incompressible flows. J. Sci. Comput. 21(3), 269–282 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  33. Sengupta, T.K., Ganeriwal, G., De, S.: Analysis of central and upwind compact schemes. J. Comput. Phys. 192, 677–694 (2003)

    Article  MATH  ADS  Google Scholar 

  34. Visval, M.R., Gaitonde, D.V.: On the use of higher order finite-difference schemes on curvilinear and deforming meshes. J. Comput. Phys. 181, 155–185 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  35. Van Der Vorst, H.A.: Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13(2), 631–644 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  36. Morikawa, K., Grönig, H.: Formation and structure of vortex systems around a translating and oscillating airfoil. Z. Flugwiss. Weltraumforsch. 19, 391–396 (1995)

    Google Scholar 

  37. Soria, J., New, T.H., Lim, T.T., Parker, K.: Multigrid CCDPIV measurements of accelerated flow past an airfoil at an angle of attack of 30o. Exp. Therm. Fluid Sci. 27, 667–676 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. K. Sengupta.

Additional information

Communicated by P. Sagaut

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sengupta, T.K., Vikas, V. & Johri, A. An improved method for calculating flow past flapping and hovering airfoils. Theor. Comput. Fluid Dyn. 19, 417–440 (2005). https://doi.org/10.1007/s00162-005-0003-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-005-0003-9

Keywords

Navigation