Skip to main content
Log in

Micro-macro scale instability in 2D regular granular assemblies

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Instability and stress–strain behavior were investigated for 2D regular assemblies of cylindrical particles. Biaxial shear experiments were performed on three sets of assemblies with regular, albeit increasingly defective structures. These experiments revealed unique instability behavior of these assemblies. Continuum models for the assemblies were then constructed using the granular micromechanics approach. In this approach, the constitutive equations governing the behavior of inter-particle contacts are written in local or microscopic level. The behavior of the RVE is then retrieved by using either kinematic constraint or least squares (static constraint) along with the principle of virtual work to equate the work done by microscopic force–displacement conjugates to that of the macroscopic stress and strain tensor conjugates. The ability of the two continuum approaches to describe the measured stress–strain behavior was evaluated. The continuum models and the local constitutive laws were used to perform instability analyses. The onset of instability and orientation of shear band was found to be well predicted by the instability analyses with the continuum models. Further, macro-scale instability was found to correlate with the instability of inter-particle contacts, although with some variations for the two modeling approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bažant Z.P., Cedolin L.: Stability of Structures: Elastic, Inelastic, Fracture and Damage Theories. World Scientific, Singapore (2010)

    Google Scholar 

  2. Hill R.: A general theory of uniqueness and stability in elastic-plastic solids. J. Mech. Phys. Solids 6(3), 236–249 (1958)

    Article  ADS  MATH  Google Scholar 

  3. Nicot, F., Hadda, N., Bourrier, F., Sibille, L., Darve, F.: To which extend the failure mode originates from microstructure? In: Constitutive Modeling of Geomaterials, pp. 359–362. Springer, Berlin (2013)

  4. Willam K.: Constitutive models for engineering materials. Encycl. Phys. Sci. Technol. 3, 603–633 (2000)

    Google Scholar 

  5. Rudnicki J.W., Rice J.: Conditions for the localization of deformation in pressure-sensitive dilatant materials. J. Mech. Phys. Solids 23(6), 371–394 (1975)

    Article  ADS  Google Scholar 

  6. Sulem, J., Vardoulakis, I.: Bifurcation Analysis in Geomechanics. Taylor & Francis, London (1995)

  7. Chang C.S., Misra A.: Theoretical and experimental-study of regular packings of granules. J. Eng. Mech.-Asce 115(4), 704–720 (1989)

    Article  Google Scholar 

  8. Chang C.S., Misra A.: Packing structure and mechanical-properties of granulates. J. Eng. Mech.-Asce 116(5), 1077–1093 (1990)

    Article  Google Scholar 

  9. Digby P.J.: The effective elastic moduli of porous granular rocks. J. Appl. Mech. 48, 803–808 (1981)

    Article  ADS  MATH  Google Scholar 

  10. Duffy J., Mindlin R.D.: Stress-strain relations of a granular medium. J. Appl. Mech. 24(4), 585–893 (1957)

    MathSciNet  Google Scholar 

  11. Walton K.: The effective elastic moduli of a random packing of spheres. J. Mech. Phys. Solids 35, 213–226 (1987)

    Article  ADS  MATH  Google Scholar 

  12. Navier C.L.: Sur les lois de l’equilibre et du mouvement des corps solides elastiques. Mem. de l’Acad. R. de Sci. 7, 375–393 (1827)

    Google Scholar 

  13. Cauchy, A.-L.: Sur l’equilibre et le mouvement d’un systeme de points materiels sollicites par des forces d’attraction ou de repulsion mutuelle. Excercises de Math. 3, 188–212 (1826–1830)

  14. dell’Isola, F., Andreaus, U., Placidi, L.: At the origins and in the vanguard of peri-dynamics, non-local and higher gradient continuum mechanics. An underestimated and still topical contribution of Gabrio Piola. Mech. Math. Solids (2013)

  15. Calvetti F., Combe G., Lanier J.: Experimental micromechanical analysis of a 2D granular material: relation between structure evolution and loading path. Mech. Cohesive-frict. Mater. 2(2), 121–163 (1997)

    Article  Google Scholar 

  16. Joer H., Lanier J., Desrues J., Flavigny E.: 1γ2ɛ′: a new shear apparatus to study the behavior of granular materials. ASTM Geotech. Test. J. 15(2), 129–137 (1992)

    Article  Google Scholar 

  17. Richefeu, V., Combe, G., Viggiani, G.: An experimental assessment of displacement fluctuations in a 2D granular material subjected to shear. arXiv preprint arXiv:1208.0485 (2012)

    Google Scholar 

  18. Sibille L., Froiio F.: A numerical photogrammetry technique for measuring microscale kinematics and fabric in Schneebeli materials. Granul. Matter 9(3-4), 183–193 (2007)

    Article  Google Scholar 

  19. Misra, A.: Particle kinematics in sheared rod assemblies. In: Physics of Dry Granular Media, pp. 261–266. Springer, Berlin (1998)

  20. Misra A., Jiang H.: Measured kinematic fields in the biaxial shear of granular materials. Comput. Geotech. 20(3), 267–285 (1997)

    Article  Google Scholar 

  21. Ferretti, M., Madeo, A., dell’Isola, F., Boisse, P.: Modeling the onset of shear boundary layers in fibrous composite reinforcements by second-gradient theory. Zeitschrift für angewandte Math. Phys., pp. 1–26 (2013)

  22. Altenbach H., Eremeyev V.A., Lebedev L.P., Rendon L.A.: Acceleration waves and ellipticity in thermoelastic micropolar media. Arch. Appl. Mech. 80(3), 217–227 (2010). doi:10.1007/s00419-009-0314-1

    Article  ADS  MATH  Google Scholar 

  23. Eremeyev V.A.: Acceleration waves in micropolar elastic media. Doklady Phys. 50(4), 204–206 (2005). doi:10.1134/1.1922562

    Article  ADS  Google Scholar 

  24. Yeremeyev V.A., Freidin A.B., Sharipova L.L.: The stability of the equilibrium of two-phase elastic solids. Pmm-J Appl. Math. Mec+ 71(1), 61–84 (2007). doi:10.1016/j.jappmathmech.2007.03.007

    Article  Google Scholar 

  25. dell’isola F., Romano A.: On the derivation of thermomechanical balance-equations for continuous systems with a nonmaterial interface. Int. J. Eng. Sci. 25(11–12), 1459–1468 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  26. dell’isola F., Romano A.: A phenomenological approach to phase-transition in classical field-theory. Int. J. Eng. Sci. 25(11–12), 1469–1475 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  27. dell’Isola F., Seppecher P., Madeo A.: How contact interactions may depend on the shape of Cauchy cuts in Nth gradient continua: approach “à la D’Alembert”. Zeitschrift für angewandte Math. und Phys. 63(6), 1119–1141 (2012). doi:10.1007/s00033-012-0197-9

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. Madeo A., dell’Isola F., Darve F.: A continuum model for deformable, second gradient porous media partially saturated with compressible fluids. J. Mech. Phys. Solids 61(11), 2196–2211 (2013). doi:10.1016/j.jmps.2013.06.009

    Article  ADS  MathSciNet  Google Scholar 

  29. Yang Y., Misra A.: Micromechanics based second gradient continuum theory for shear band modeling in cohesive granular materials following damage elasticity. Int. J. Solids Struct. 49(18), 2500–2514 (2012). doi:10.1016/j.ijsolstr.2012.05.024

    Article  Google Scholar 

  30. Placidi, L., Rosi, G.: Giorgio. I., Madeo A.: Reflection and transmission of plane waves at surfaces carrying material properties and embedded in second gradient materials. Math. Mech. Solids (2013). doi:10.1177/1081286512474016

  31. Luongo A.: Mode localization in dynamics and buckling of linear imperfect continuous structures. Nonlinear Dyn. 25(1–3), 133–156 (2001). doi:10.1023/A:1012954700751

    Article  MATH  MathSciNet  Google Scholar 

  32. Luongo A., Di Egidio A.: Bifurcation equations through multiple-scales analysis for a continuous model of a planar beam. Nonlinear Dyn. 41(1–3), 171–190 (2005). doi:10.1007/s11071-005-2804-1

    Article  MATH  MathSciNet  Google Scholar 

  33. Luongo A., Romeo F.: A transfer-matrix-perturbation approach to the dynamics of chains of nonlinear sliding beams. J. Vib. Acoust. 128(2), 190–196 (2006). doi:10.1115/1.2159034

    Article  Google Scholar 

  34. Luongo A., Zulli D., Piccardo G.: On the effect of twist angle on nonlinear galloping of suspended cables. Comput. Struct. 87(15–16), 1003–1014 (2009). doi:10.1016/j.compstruc.2008.04.014

    Article  Google Scholar 

  35. Rinaldi A., Krajcinovic D., Peralta P., Lai Y.C.: Lattice models of polycrystalline micro structures: a quantitative approach. Mech. Mater 40(1–2), 17–36 (2008). doi:10.1016/j.mechmat.2007.02.005

    Article  Google Scholar 

  36. Rinaldi A., Lai Y.C.: Statistical damage theory of 2D lattices: energetics and physical foundations of damage parameter. Int. J. Plast. 23(10–11), 1796–1825 (2007). doi:10.1016/j.ijplas.2007.03.005

    Article  MATH  Google Scholar 

  37. Cundall P.A., Strack O.D.L.: Discrete numerical-model for granular assemblies. Geotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  38. Alibert J.J., Seppecher P., Dell’Isola F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8(1), 51–73 (2003). doi:10.1177/108128603029658

    Article  MATH  MathSciNet  Google Scholar 

  39. Seppecher P., Alibert J.-J., dell’Isola F.: Linear elastic trusses leading to continua with exotic mechanical interactions. J. Phys.: Conf. Ser. 319(1), 012018 (2011)

    ADS  Google Scholar 

  40. Jenkins J.T.: Volume change in small strain axisymmetric defromations of a granular material. In: Satake, M., Jenkins, J.T. (eds.) Micromechanics of Granular Materials, pp. 245–252. Elsevier Science Publishers, Amsterdam (1988)

    Google Scholar 

  41. Liao C.L., Chang T.P., Young D.H., Chang C.S.: Stress-strain relationship for granular materials based on the hypothesis of best fit. Int. J. Solids Struct. 34(31–32), 4087–4100 (1997). doi:10.1016/S0020-7683(97)00015-2

    Article  MATH  Google Scholar 

  42. Kanatani K.I.: Distribution of directional-data and fabric tensors. Int. J. Eng. Sci. 22(2), 149–164 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  43. Taylor G.I.: Plastic strain in metals. J. Inst. Metals 62, 307–324 (1938)

    Google Scholar 

  44. Pande G.N., Sharma K.: Multi-laminate model of clays—a numerical evaluation of the influence of rotation of the principal stress axes. Int. J. Numer. Anal. Methods Geomech. 7(4), 397–418 (1983)

    Article  MATH  Google Scholar 

  45. Chang C.S., Hicher P.Y.: An elasto-plastic model for granular materials with microstructural consideration. Int. J. Solids Struct. 42(14), 4258–4277 (2005). doi:10.1016/j.ijsolstr.2004.09.021

    Article  MATH  Google Scholar 

  46. Misra, A., Parthasarathy, R., Singh, V., Spencer, P.: Micro-poromechanics model of fluid-saturated chemically active fibrous media. ZAMM-J. Appl. Math. Mech./Zeitschrift für Angewandte Math. und Mech. (2013)

  47. Misra A., Singh V.: Micromechanical model for viscoelastic materials undergoing damage. Continuum Mech. Thermodyn. 25(2–4), 343–358 (2013). doi:10.1007/s00161-012-0262-9

    Article  ADS  MathSciNet  Google Scholar 

  48. Misra A., Yang Y.: Micromechanical model for cohesive materials based upon pseudo-granular structure. Int. J. Solids Struct. 47(21), 2970–2981 (2010). doi:10.1016/j.ijsolstr.2010.07.002

    Article  MATH  Google Scholar 

  49. Johnson K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)

    Book  MATH  Google Scholar 

  50. Mindlin R.D., Deresiewicz H.: Elastic spheres in contact under varying oblique forces. J. Appl. Mech.-Trans. ASME 20(3), 327–344 (1953)

    MATH  MathSciNet  Google Scholar 

  51. Kruggel-Emden H., Wirtz S., Scherer V.: Applicable contact force models for the discrete element method: the single particle perspective. J. Press. Vessel Technol-Trans. ASME 131(2), 024001 (2009). doi:10.1115/1.3040682

    Article  Google Scholar 

  52. Buscarnera G., Dattola G., di Prisco C.: Controllability, uniqueness and existence of the incremental response: a mathematical criterion for elastoplastic constitutive laws. Int. J. Solids Struct. 48(13), 1867–1878 (2011). doi:10.1016/j.ijsolstr.2011.02.016

    Article  Google Scholar 

  53. Nova R.: Controllability of the incremental response of soil specimens subjected to arbitrary loading programmes. J. Mech. Behav. Mater. 5(2), 193–202 (1994)

    Article  Google Scholar 

  54. Nova, R.: The failure concept in soil mechanics revisited. Bifurcations Instab. Geomech. pp. 3–16 (2003)

  55. Nicot F., Sibille L., Donze F., Darve F.: From microscopic to macroscopic second-order work in granular assemblies. Mech. Mater 39(7), 664–684 (2007)

    Article  Google Scholar 

  56. Nicot F., Darve F.: Diffuse and localized failure modes: two competing mechanisms. Int. J. Numer. Anal. Methods Geomech. 35(5), 586–601 (2011)

    Article  MATH  Google Scholar 

  57. Datta S., Shah A.: Elastic Waves in Composite Media and Structures. CRC Press, Boca Raton (2009)

    MATH  Google Scholar 

  58. Carcaterra A.: Ensemble energy average and energy flow relationships for nonstationary vibrating systems. J. Sound Vib. 288(3), 751–790 (2005). doi:10.1016/j.jsv.2005.07.015

    Article  ADS  Google Scholar 

  59. Carcaterra A., Akay A.: Theoretical foundations of apparent-damping phenomena and nearly irreversible energy exchange in linear conservative systems. J. Acoust. Soc. Am. 121(4), 1971–1982 (2007). doi:10.1121/1.2697030

    Article  ADS  Google Scholar 

  60. Culla A., Sestieri A., Carcaterra A.: Energy flow uncertainties in vibrating systems: definition of a statistical confidence factor. Mech. Syst. Signal Process. 17(3), 635–663 (2003). doi:10.1006/mssp.2002.1487

    Article  ADS  Google Scholar 

  61. dell’Isola F., Madeo A., Seppecher P.: Boundary conditions at fluid-permeable interfaces in porous media: a variational approach. Int. J. Solids Struct. 46(17), 3150–3164 (2009). doi:10.1016/j.ijsolstr.2009.04.008

    Article  MATH  MathSciNet  Google Scholar 

  62. Sciarra G., dell’Isola F., Coussy O.: Second gradient poromechanics. Int. J. Solids Struct. 44(20), 6607–6629 (2007). doi:10.1016/j.ijsolstr.2007.03.003

    Article  MATH  MathSciNet  Google Scholar 

  63. Dell’Isola, F., Hutter, K.: What are the dominant thermomechanical processes in the basal sediment layer of large ice sheets? Proc. R. Soc. Lond. Ser. Math. Phys. Eng. Sci. 454(1972), 1169–1195 (1998)

  64. Contrafatto L., Cuomo A.: A globally convergent numerical algorithm for damaging elasto-plasticity based on the multiplier method. Int. J. Numer. Methods Eng. 63(8), 1089–1125 (2005). doi:10.1002/Nme.1235

    Article  MATH  MathSciNet  Google Scholar 

  65. Contrafatto L., Cuomo M.: A new thermodynamically consistent continuum model for hardening plasticity coupled with damage. Int. J. Solids Struct. 39(25), 6241–6271 (2002). doi:10.1016/S0020-7683(02)00470-5

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Misra.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Misra, A., Poorsolhjouy, P. Micro-macro scale instability in 2D regular granular assemblies. Continuum Mech. Thermodyn. 27, 63–82 (2015). https://doi.org/10.1007/s00161-013-0330-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-013-0330-9

Keywords

Navigation