Skip to main content
Log in

A micro-polar theory for binary media with application to phase-transitional flow of fiber suspensions

  • Original article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract.

A phase-transitional flow takes place during the filling stage by injection molding of short-fiber reinforced thermoplastics. The mechanical properties of the final product are highly dependent on the flow-induced distribution and orientation of particles. Therefore, modelling of the flow which allows to predict the formation of fiber microstructure is of particular importance for analysis and design of load bearing components.

The aim of this paper is a discussion of existing models which characterize the behavior of fiber suspensions as well as the derivation of a model which treats the filling process as a phase-transitional flow of a binary medium consisting of fluid particles (liquid constituent) and immersed particles-fibers (solid-liquid constituent). The particle density and the mass density are considered as independent functions in order to account for the phenomenon of sticking of fluid particles to fibers. The liquid constituent is treated as a non-polar viscous fluid, but with a non-symmetric stress tensor. The state of the solid-liquid constituent is described by the antisymmetric stress tensor and the antisymmetric moment stress tensor. The forces of viscous friction between the constituents are taken into account. The equations of motion are formulated for open physical systems in order to consider the phenomenon of sticking. The chemical potential is introduced based on the reduced energy balance equation. The second law of thermodynamics is formulated by means of two inequalities under the assumption that the constituents may have different temperatures. In order to take into account the phase transitions of the liquid-solid type which take place during the flow process a model of compressible fluid and a constitutive equation for the pressure are proposed. Finally, the set of governing equations which should be solved numerically in order to simulate the filling process are summarized. The special cases of these equations are discussed by introduction of restricting assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Advani, S. G., Tucker, C. L.: The use of tensors to describe and predict fiber orientation in short fibers composites. J. Rheol. 31, 751-784 (1987)

    Article  Google Scholar 

  2. Advani, S. G., Tucker, C. L.: Closure approximations for three-dimensional structure tensors. J. Rheol. 34, 367-386 (1990)

    Article  Google Scholar 

  3. Altan, M. C., Rao, B. N.: Closed-form solution for the orientation field in a center-gated disk. J. Rheol. 39, 581-599 (1995)

    Article  Google Scholar 

  4. Altan, M. C., Subbiah, S., Güçeri, S. I., Pipes, R. B.: Numerical prediction of three-dimensional fiber orientation in Hele-Shaw Flows. Polym. Eng. Sci. 30, 848-859 (1990)

    Google Scholar 

  5. Altenbach, J., Altenbach, H.: Einführung in die Kontinuumsmechanik. Teubner Studienbücher Mechanik. Stuttgart: Teubner (1994)

  6. Batchelor, G. K.: The stress system in a suspension of force free particles. J. Fluid Mech. 41, 545-570 (1970)

    MATH  Google Scholar 

  7. Bay, R. S., Tucker, C. L.: Fiber orientation in simple injection moldings. Part 1: theory and numerical methods. Polym. Comp. 13, 317-331 (1992)

    Google Scholar 

  8. Bay, R. S., Tucker, C. L.: Fiber orientation in simple injection moldings. Part 2: experimental results. Polym. Comp. 13, 332-341 (1992)

    Google Scholar 

  9. Brenner, H., Condiff, D. W.: Transport mechanics of orientable particles III. Arbitrary particles. Rheol. Acta 41, 228-274 (1971)

    Google Scholar 

  10. Chung, S. T., Kwon, T. H.: Numerical simulation of fiber orientation in injection molding of short-fiber reinforced thermoplastics. Polym. Eng. Sci. 35, 604-618 (1995)

    MATH  Google Scholar 

  11. Cintra, J. S., Tucker, C. L.: Orthotropic closure approximations for flow-induced fiber orientation. J. Rheol. 39, 1095-1122 (1995)

    Article  Google Scholar 

  12. Dinh, S. M., Armstrong, R. C.: A rheological equation of state for semiconcentrated fiber suspensions. J. Rheol. 28, 207-227 (1984)

    Article  MATH  Google Scholar 

  13. Doi, M., Edwards, S. F.: The Theory of Polymer Dynamics. Oxford: Oxford University Press (1988)

  14. Dupret, F., Couniot, A., Mal, O., Vanderschuren, L., Verhoyen, O.: Modelling and simulation of injection molding. In: Siginer, D. A., Kee, D. D., Chhabra, R. P. (Eds.): Advances in the Flow and Rheology of Non-Newtonian Fluids. Amsterdam: Elsevier, pp. 939-1010 (1999)

  15. Dupret, F., Verleye, V.: Modelling of the flow of fiber suspensions in narrow gaps. In: Siginer, D. A., Kee, D. D., Chhabra, R. P. (Eds.): Advances in the Flow and Rheology of Non-Newtonian Fluids. Amsterdam: Elsevier, pp. 1347-1398 (1999)

  16. Ericksen, J. L.: Anisotropic fluids. Arch. Rational Mech. Anal. 3, 231-237 (1960)

    Google Scholar 

  17. Ericksen, J. L.: Transversely isotropic fluids. Kolloid-Zeitschrift 173, 117-122 (1960)

    Google Scholar 

  18. Eringen, A. C.: Continuum theory of dense rigid suspensions. Rheologica Acta 30, 23-32 (1991)

    MATH  Google Scholar 

  19. Eringen, A. C.: Microcontinuum Field Theories. II:Fluent Media. New York: Springer (2001)

  20. Faria, S. H.: Mixtures with continuous diversity: general theory and application to polymer solutions. Continuum Mech. Thermodyn. 13, 91-120 (2001)

    Article  MATH  Google Scholar 

  21. Giesekus, H.: Phänomelogische Rheologie. Berlin: Springer (1994)

  22. Glaser, S., v Diest, K.: Berechnungsverfahren für GFK-Bauteile. Kunststoffe 88, 537-542 (1988)

    Google Scholar 

  23. Halmos, P. R.: Measure Theory. New York: Springer (1974)

  24. Hegler, R. P.: Faserorientierung beim Verarbeiten kurzfaserverstärkter Thermoplaste. Kunststoffe 74, 271-277 (1984)

    Google Scholar 

  25. Huilgol, R. R., Phan-Thien, N.: Fluid Mechanics of Viscoelasticity. Amsterdam: Elsevier (1997)

  26. Jeffery, G. B.: The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. London A 102, 161-179 (1922)

    Google Scholar 

  27. Kennedy, P.: Flow Analysis of Injection Molds. Munich: Hanser Publishers (1995)

  28. Lurie, A. I.: Nonlinear Theory of Elasticity. Amsterdam: North-Holland (1990)

  29. Menning, G.: Werkzeuge für die Kunststoffverarbeitung. München: Carl Hanser Verlag (1995)

  30. Michaeli, W.: Plastics Processing. Munich: Hanser Publishers (1995)

  31. Munganga, J. M. W., Reddy, B. D., Diatezua, K. J.: Aspects of the thermodynamic stability of fibre suspension flows. J. of Non-Newtonian Fluid. Mech. 92, 135-150 (2000)

    Article  MATH  Google Scholar 

  32. Palmov, V. A.: Vibrations of Elasto-Plastic Bodies. Berlin: Springer (1998)

  33. Petrie, C. J. S.: The rheology of fibre suspensions. J. Non-Newtonian Fluid Mech. 87, 369-402 (1999)

    Article  MATH  Google Scholar 

  34. Probstein, R. F.: Physicochemical Hydrodynamics. New York: John Wiley and Sons (1994)

  35. Ranganathan, S., Advani, S. G.: A Simultaneous solution for flow and fiber orientation in axisymmetric diverging radial flow. J. of Non-Newtonian Fluid. Mech. 47, 107-136 (1993)

    Article  MATH  Google Scholar 

  36. Saito, M., Kukula, S., Kataoka, Y., Miyata, T.: Practical use of statistically modified laminate model for injection moldings. Material Science and Engineering A 285, 280-287 (2000)

    Article  Google Scholar 

  37. Schmachtenberg, E., Yazici, N. M., Schröder, O.: Untersuchung des Langzeitfestigkeitsverhaltens von Pumpenbauteilen aus Kunststoff. Abschlußbericht, AIF Forschungsvorhaben, Auftraggeber: WILO GmbH Dortmund, Universität Essen, Institut für Kunststofftechnik und Kunststoffmaschinen (2000)

  38. Truesdell, C. A.: Rational Termodynamics. New York: Springer (1984)

  39. Tucker, C. L., Advani, G.: Processing of short-fiber systems. In: Advani, S. G. (Ed.): Flow and Rheology in Polymer Composites Manufacturing. Amsterdam: Elsevier, pp. 147-202 (1994)

  40. Vincent, M., Agassant, J. F.: Experimental study and calculations of short glass fiber orientation in a center gated molded disc. Polym. Comp. 7, 76-83 (1986)

    Google Scholar 

  41. Whiteside, B. R., Coates, P. D., Hine, P. J., Duckett, R. A.: Glass fibre orientation within injection moulded automotive pedal. Simulation and experimental studies. Plastics, Rubber and Composites 29, 38-45 (2000)

    Google Scholar 

  42. Zhilin, P. A.: Mechanics of Deformable Directed Surfaces. Int. J. Solids Structures 12, 635-648 (1976)

    Article  Google Scholar 

  43. Zhilin, P. A.: A New Approach to the Analysis of Free Rotations of Rigid Bodies. ZAMM 76, 187-204 (1996)

    MATH  Google Scholar 

  44. Zhilin, P. A.: The basic equtions of the inelastic media. In: Indeitsev, D. A. (Ed.): Actual Problems in Mechanics. St. Petersburg: Institute for Problems in Mechanical Engineering of Russian Academy of Sciences, pp. 14-58 (2000) (in Russian)

  45. Zhilin, P. A.: Vectors and second rank tensors in 3D-space. St. Petersburg: Nestor (2001) (in Russian)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Altenbach.

Additional information

Communicated by H. Ehrentraut

Received: 6 May 2002, Accepted: 16 December 2002, Published online: 29 July 2003

PACS:

83.10.Ff, 83.70.Hg, 83.50.Cz

Correspondence to: H. Altenbach

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altenbach, H., Naumenko, K. & Zhilin, P.A. A micro-polar theory for binary media with application to phase-transitional flow of fiber suspensions. Continuum Mech. Thermodyn. 15, 539–570 (2003). https://doi.org/10.1007/s00161-003-0133-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-003-0133-5

Keywords:

Navigation