Skip to main content
Log in

The effect of iNOS deletion on hepatic gluconeogenesis in hyperdynamic murine septic shock

  • Experimental
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Objective

To investigate the role of the inducible nitric oxide synthase activation-induced excess nitric oxide formation on the rate of hepatic glucose production during fully resuscitated murine septic shock.

Design

Prospective, controlled, randomized animal study.

Setting

University animal research laboratory.

Subjects

Male C57Bl/6 and B6.129P2-Nos2tm1Lau/J (iNOS−/−) mice.

Interventions

Fifteen hours after cecal ligation and puncture, anesthetized, mechanically ventilated and instrumented mice (wild-type controls, n = 13; iNOS−/−, n = 12; wild-type mice receiving 5 mg·kg−1 i.p. of the selective iNOS inhibitor GW274150 immediately after cecal ligation and puncture, n = 8) received continuous i.v. hydroxyethylstarch and norepinephrine to achieve normotensive and hyperdynamic hemodynamics.

Measurements and results

Measurements were recorded 18, 21 and 24 h after cecal ligation and puncture. Liver microcirculatory perfusion and capillary hemoglobin O2 saturation (laser Doppler flowmetry and remission spectrophotometry) were well maintained in all groups. Despite significantly lower norepinephrine doses required to achieve the hemodynamic targets, the rate of hepatic glucose production (gas chromatography–mass spectrometry measurements of tissue isotope enrichment during continuous i.v. 1,2,3,4,5,6-13C6-glucose infusion) at 24 h after cecal ligation and puncture was significantly higher in both iNOS−/− and GW274150-treated mice, which was concomitant with a significantly higher hepatic phosphoenolpyruvate carboxykinase activity (spectrophotometry) in these animals.

Conclusions

In normotensive, hyperdynamic septic shock, both pharmacologic and genetic deletion of the inducible nitric oxide synthase allowed maintenance of hepatic glucose production, most likely due to maintained activity of the key regulatory enzyme of gluconeogenesis, phosphoenolpyruvate carboxykinase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. L'Her E, Sebert P (2001) A global approach to energy metabolism in an experimental model of sepsis. Am J Respir Crit Care Med 164:1444–1447

    PubMed  Google Scholar 

  2. Tu W, Satoi S, Zhang Z, Kitade H, Okumura T, Kwon AH, Kamiyama Y (2003) Hepatocellular dysfunction induced by nitric oxide production in hepatocytes isolated from rats with sepsis. Shock 19:373–377

    Article  PubMed  CAS  Google Scholar 

  3. Brealey D, Karyampudi S, Jacques TS, Novelli M, Stidwill R, Taylor V, Smolenski RT, Singer M (2004) Mitochondrial dysfunction in a long-term rodent model of sepsis and organ failure. Am J Physiol Regul Integr Comp Physiol 286:R491–R497

    PubMed  CAS  Google Scholar 

  4. Porta F, Takala J, Weikert C, Bracht H, Kolarova A, Lauterburg BH, Borotto E, Jakob SM (2006) Effects of prolonged endotoxemia on liver, skeletal muscle and kidney mitochondrial function. Crit Care 10:R118

    Article  PubMed  Google Scholar 

  5. King CJ, Tytgat S, Delude RL, Fink MP (1999) Ileal mucosal oxygen consumption is decreased in endotoxemic rats but is restored toward normal by treatment with aminoguanidine. Crit Care Med 27:2518–2524

    Article  PubMed  CAS  Google Scholar 

  6. Brealey D, Brand M, Hargreaves I, Heales S, Land J, Smolenski R, Davies NA, Cooper CE, Singer M (2002) Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 360:219–223

    Article  PubMed  CAS  Google Scholar 

  7. Boulos M, Astiz ME, Barua RS, Osman M (2003) Impaired mitochondrial function induced by serum from septic shock patients is attenuated by inhibition of nitric oxide synthase and poly(ADP-ribose) synthase. Crit Care Med 31:353–358

    Article  PubMed  CAS  Google Scholar 

  8. Albuszies G, Radermacher P, Vogt J, Wachter U, Weber S, Schoaff M, Georgieff M, Barth E (2005) Effect of increased cardiac output on hepatic and intestinal microcirculatory blood flow, oxygenation, and metabolism in hyperdynamic murine septic shock. Crit Care Med 33:2332–2338

    Article  PubMed  Google Scholar 

  9. Horton RA, Ceppi ED, Knowles RG, Titheradge MA (1994) Inhibition of hepatic gluconeogenesis by nitric oxide: a comparison with endotoxic shock. Biochem J 299:735–739

    PubMed  CAS  Google Scholar 

  10. Stadler J, Barton D, Beil-Moeller H, Diekmann S, Hierholzer C, Erhard W, Heidecke CD (1995) Hepatocyte nitric oxide biosynthesis inhibits glucose output and competes with urea synthesis for L-arginine. Am J Physiol 268:G183–G188

    PubMed  CAS  Google Scholar 

  11. Sprangers F, Sauerwein HP, Romijn JA, van Woerkom GM, Meijer AJ (1998) Nitric oxide inhibits glycogen synthesis in isolated rat hepatocytes. Biochem J 330:1045–1049

    PubMed  CAS  Google Scholar 

  12. Andrejko KM, Deutschman CS (1997) Altered hepatic gene expression in fecal peritonitis: changes in transcription of gluconeogenic, beta-oxidative, and ureagenic genes. Shock 7:164–169

    Article  PubMed  CAS  Google Scholar 

  13. Deutschman CS, Andrejko KM, Haber BA, Bellin L, Elenko E, Harrison R, Taub R (1997) Sepsis-induced depression of rat glucose-6-phosphatase gene expression and activity. Am J Physiol 273:R1709–R1718

    PubMed  CAS  Google Scholar 

  14. Ceppi ED, Smith FS, Titheradge MA (1996) Effect of multiple cytokines plus bacterial endotoxin on glucose and nitric oxide production by cultured hepatocytes. Biochem J 317:503–507

    PubMed  CAS  Google Scholar 

  15. Ou J, Molina L, Kim YM, Billiar TR (1996) Excessive NO production dose not account for the inhibition of hepatic gluconeogenesis in endotoxemia. Am J Physiol 271:G621–G628

    PubMed  CAS  Google Scholar 

  16. Villa P, Demitri MT, Meazza C, Sironi M, Gnocchi P, Ghezzi P (1996) Effects of methyl palmitate on cytokine release, liver injury and survival in mice with sepsis. Eur Cytokine Netw 7:765–769

    PubMed  CAS  Google Scholar 

  17. Träger K, Radermacher P, Rieger KM, Vlatten A, Vogt J, Iber T, Adler J, Wachter U, Grover R, Georgieff M, Šantak B (1999) Norepinephrine and Nω-monomethyl-L-arginine in porcine septic shock: effects on hepatic O2 exchange and energy balance. Am J Respir Crit Care Med 159:1758–1765

    PubMed  Google Scholar 

  18. Matejovic M, Radermacher P, Tugtekin I, Stehr A, Theisen M, Vogt J, Wachter U, Ploner F, Georgieff M, Träger K (2001) Effects of selective iNOS inhibition on gut and liver O2-exchange and energy metabolism during hyperdynamic porcine endotoxemia. Shock 16:203–210

    Article  PubMed  CAS  Google Scholar 

  19. Moeniralam HS, Sprangers F, Endert E, Ackermans MT, Van Lanschot JJ, Sauerwein HP, Romijn JA (2001) Role of nitric oxide in the regulation of glucose kinetics in response to endotoxin in dogs. J Appl Physiol 91:130–136

    PubMed  CAS  Google Scholar 

  20. Strunk V, Hahnenkamp K, Schneuing M, Fischer LG, Rich GF (2001) Selective iNOS inhibition prevents hypotension in septic rats while preserving endothelium-dependent vasodilation. Anesth Analg 92:681–687

    Article  PubMed  CAS  Google Scholar 

  21. Barth E, Radermacher P, Thiemermann C, Weber S, Georgieff M, Albuszies G (2006) Role of inducible nitric oxide synthase in the reduced responsiveness of the myocardium to catecholamines in a hyperdynamic, murine model of septic shock. Crit Care Med 34:307–313

    Article  PubMed  CAS  Google Scholar 

  22. Alderton WK, Angell ADR, Craig C, Dawson J, Garvey EP, Moncada S, Monkhouse J, Rees D, Russell LJ, Schwartz S, Waslidge N, Knowles RG (2005) GW274150 and GW273629 are potent and highly selective inhibitors of inducible nitric oxide (iNOS) in vitro and in vivo. Br J Pharmacol 145:310–312

    Article  CAS  Google Scholar 

  23. Cobelli C, Toffolo G, Ferrannini E (1984) A model of glucose kinetics and their control by insulin, compartmental and noncompartmental approaches. Math Biosci 72:291–316

    Article  CAS  Google Scholar 

  24. Bier DM, Leake RD, Haymond MW, Arnold KJ, Gruenke LD, Sperling MA, Kipnis DM (1977) Measurement of “true” glucose production rates in infancy and childhood with 6,6-dideuteroglucose. Diabetes 26:1016–1023

    Article  PubMed  CAS  Google Scholar 

  25. Goswami C, Datta S, Biswas K, Saha N (2004) Cell volume changes affect gluconeogenesis in the perfused liver of the catfish Clarias batrachus. J Biosci 29:337–347

    PubMed  CAS  Google Scholar 

  26. Hansen RJ, Hinze H, Holzer H (1976) Assay of phosphoenolpyruvate carboxykinase in crude yeast extracts. Anal Biochem 74:576–584

    Article  PubMed  CAS  Google Scholar 

  27. Nüssler AK, Brückner UB, Vogt J, Radermacher P (2002) Measuring end products of nitric oxide in vivo. Methods Enzymol 359:75–83

    Article  PubMed  Google Scholar 

  28. Connolly CC, Steiner KE, Stevenson RW, Neal DW, Williams PE, Alberti KG, Cherrington AD (1991) Regulation of glucose metabolism by norepinephrine in conscious dogs. Am J Physiol 261:E764–E772

    PubMed  CAS  Google Scholar 

  29. Chu CA, Galassetti P, Igawa K, Sindelar DK, Neal DW, Burish M, Cherrington AD (2003) Interaction of free fatty acids and epinephrine in regulating hepatic glucose production in conscious dogs. Am J Physiol Endocrinol Metab 284:E291–E301

    PubMed  CAS  Google Scholar 

  30. Bearn AG, Billing B, Sherlock S (1951) The effect of adrenaline and noradrenaline on hepatic blood flow and splanchnic carbohydrate metabolism in man. J Physiol 115:430–441

    PubMed  CAS  Google Scholar 

  31. Ensinger H, Geisser W, Brinkmann A, Wachter U, Vogt J, Radermacher P, Georgieff M, Träger K (2002) Metabolic effects of norepinephrine and dobutamine in healthy volunteers. Shock 18:495–500

    Article  PubMed  Google Scholar 

  32. Wang P, Tait SM, Chaudry IH (2000) Sustained elevation of norepinephrine depresses hepatocellular function. Biochim Biophys Acta 1535:36–44

    PubMed  CAS  Google Scholar 

  33. Yang S, Koo DJ, Zhou M, Chaudry IH, Wang P (2000) Gut-derived norepinephrine plays a critical role in producing hepatocellular dysfunction during early sepsis. Am J Physiol Gastrointest Liver Physiol 279:G1274–G1281

    PubMed  CAS  Google Scholar 

  34. Yang S, Zhou M, Chaudry IH, Wang P (2001) Norepinephrine-induced hepatocellular dysfunction in early sepsis is mediated by activation of alpha2-adrenoceptors. Am J Physiol Gastrointest Liver Physiol 281:G1014–G1021

    PubMed  CAS  Google Scholar 

  35. Gumucio JJ (1989) Hepatocyte heterogeneity: the coming of age from the description of a biological curiosity to a partial understanding of its physiological meaning and regulation. Hepatology 9:154–160

    Article  PubMed  CAS  Google Scholar 

  36. Dahn MS, Mitchell RA, Lange MP, Smith S, Jacobs LA (1995) Hepatic metabolic response to injury and sepsis. Surgery 117:520–530

    Article  PubMed  CAS  Google Scholar 

  37. Reinelt H, Radermacher P, Kiefer P, Fischer G, Wachter U, Vogt J, Georgieff M (1999) Impact of exogenous beta-adrenergic receptor stimulation on hepatosplanchnic oxygen kinetics and metabolic activity in septic shock. Crit Care Med 27:325–331

    Article  PubMed  CAS  Google Scholar 

  38. Wilmore DW (1977) Impaired gluconeogenesis in extensively injured patients with gram-negative bacteremia. Am J Clin Nutr 30:1355–1356

    PubMed  CAS  Google Scholar 

  39. Wilmore DW, Goodwin CW, Aulick LH, Powanda MC, Mason AD Jr, Pruitt BA Jr (1980) Effect of injury and infection on visceral metabolism and circulation. Ann Surg 192:491–504

    Article  PubMed  CAS  Google Scholar 

  40. Maitra SR, Homan CS, Beuhler MC, Thode HC Jr, Henry M (1999) Alterations in hepatic gluconeogenesis, prostanoid, and intracellular calcium during sepsis. Acad Emerg Med 6:588–595

    PubMed  CAS  Google Scholar 

  41. Matejovic M, Krouzecky A, Martinkova V, Rokyta R, Kralova H, Treska V, Radermacher P, Novak I (2004) Selective inducible nitric oxide synthase inhibition during long-term hyperdynamic porcine bacteremia. Shock 21:458–465

    Article  PubMed  CAS  Google Scholar 

  42. Siegemund M, van Bommel J, Schwarte LA, Studer W, Girard T, Marsch S, Radermacher P, Ince C (2005) Inducible nitric oxide synthase inhibition improves intestinal microcirculatory oxygenation and CO2 balance during endotoxemia in pigs. Intensive Care Med 31:985–992

    Article  PubMed  Google Scholar 

  43. Pullamsetti SS, Maring D, Ghofrani HA, Mayer K, Weissmann N, Rosengarten B, Lehner M, Schudt C, Boer R, Grimminger F, Seeger W, Schermuly RT (2006) Effect of nitric oxide synthase (NOS) inhibition on macro- and microcirculation in a model of rat endotoxic shock. Thromb Haemost 95:720–727

    PubMed  CAS  Google Scholar 

  44. Ince C, Sinaasappel M (1999) Microcirculatory oxygenation and shunting in sepsis and shock. Crit Care Med 27:1369–1377

    Article  PubMed  CAS  Google Scholar 

  45. Ceppi ED, Titheradge MA (1998) The importance of nitric oxide in the cytokine-induced inhibition of glucose formation by cultured hepatocytes incubated with insulin, dexamethasone, and glucagon. Arch Biochem Biophys 349:167–174

    Article  PubMed  CAS  Google Scholar 

  46. Rognstad R (1979) Rate-limiting steps in metabolic pathways. J Biol Chem 254:1875–1878

    PubMed  CAS  Google Scholar 

  47. Ochs RS, Lardy HA (1983) Catecholamine stimulation of hepatic gluconeogenesis at the site between pyruvate and phosphoenolpyruvate. J Biol Chem 258:9956–9962

    PubMed  CAS  Google Scholar 

  48. Horton RA, Knowles RG, Titheradge MA (1994) Endotoxin causes reciprocal changes in hepatic nitric oxide synthesis, gluconeogenesis, and flux through phosphoenolpyruvate carboxykinase. Biochem Biophys Res Commun 204:659–665

    Article  PubMed  CAS  Google Scholar 

  49. Pilkis SJ, Granner DK (1992) Molecular physiology of the regulation of hepatic gluconeogenesis and glycolysis. Annu Rev Physiol 54:885–909

    Article  PubMed  CAS  Google Scholar 

  50. Pison CM, Chauvin C, Fontaine E, Catelloni F, Keriel C, Paramelle B, Leverve XM (1995) Mechanism of gluconeogenesis inhibition in rat hepatocytes isolated after in vivo hypoxia. Am J Physiol 268:E965–E973

    PubMed  CAS  Google Scholar 

  51. Deutschman CS, De Maio A, Buchman TG, Clemens MG (1993) Sepsis-induced alterations in phosphoenolpyruvate carboxykinase expression: the role of insulin and glucagon. Circ Shock 40:295–302

    PubMed  CAS  Google Scholar 

  52. Chang CK, Moskal SF, Srivenugopal KS, Schumer W (1993) Altered levels of mRNA encoding enzymes of hepatic glucose metabolism in septic rats. Circ Shock 41:35–39

    PubMed  CAS  Google Scholar 

  53. Yamauchi K, Nakajima K, Ikeo S, Nishimura Y, Komatsu M, Aizawa T, Hashizume K (2001) Effects of nipradilol, a nitric oxide-releasing beta-adrenoceptor blocking agent, on phosphoenolpyruvate carboxykinase gene transcription in a rat hepatoma cell line. Jpn J Pharmacol 87:83–85

    Article  PubMed  CAS  Google Scholar 

  54. Hellerstein MK (2004) New stable isotope-mass spectrometric techniques for measuring fluxes through intact metabolic pathways in mammalian systems: introduction of moving pictures into functional genomics and biochemical phenotyping. Metab Eng 6:85–100

    Article  PubMed  CAS  Google Scholar 

  55. van Dijk TH, Boer TS, Havinga R, Stellaard F, Kuipers F, Reijngoud DJ (2003) Quantification of hepatic carbohydrate metabolism in conscious mice using serial blood and urine spots. Anal Biochem 322:1–13

    Article  PubMed  CAS  Google Scholar 

  56. Katz J, Wals P, Lee WN (1993) Isotopomer studies of gluconeogenesis and the Krebs cycle with 13C-labeled lactate. J Biol Chem 268:25509–25521

    PubMed  CAS  Google Scholar 

  57. Katz J, Lee WN, Wals PA, Bergner EA (1989) Studies of glycogen synthesis and the Krebs cycle by mass isotopomer analysis with [U-13C]glucose in rats. J Biol Chem 264:12994–13004

    PubMed  CAS  Google Scholar 

  58. Van den Berghe G (2004) How does blood glucose control with insulin save lives in intensive care? J Clin Invest 114:1187–1195

    Article  CAS  Google Scholar 

  59. Chauhan SD, Seggara G, Vo PA, MacAllister RJ, Hobbs AJ, Ahluwalia A (2003) Protection against lipolysaccharide-induced endothelial dysfunction in resistance and conduit vasculature of iNOS knockout mice. FASEB J 17:773–775

    PubMed  CAS  Google Scholar 

  60. Connelly L, Madhani M, Hobbs AJ (2005) Resistance to endotoxic shock in endothelial nitric-oxide synthase (eNOS) knockout mice. J Biol Chem 280:10040–10046

    Article  PubMed  CAS  Google Scholar 

  61. Liaudet L, Mabley JG, Soriano FG, Pacher P, Marton A, Haskó G, Szabó C (2001) Inosine reduces systemic inflammation and improves survivla in septic shock induced by cecal ligation and puncture. Am J Respir Crit Care Med 164:1213–1220

    PubMed  CAS  Google Scholar 

  62. Soriano FG, Liaudet L, Szabó E, Virág L, Mabley JG, Pacher P, Szabó C (2002) Resistance to acute septic peritonitis in poly(ADp-ribose) polymerase-1 deficient mice. Shock 17:286–292

    Article  PubMed  Google Scholar 

  63. Wu F, Wilson JX, Tyml K (2003) Ascorbate inhibits iNOS expression and preserves vasoconstrictor responsiveness in skeletal muscle of septic mice. Am J Physiol Regul Integrative Comp Physiol 285:50–56

    Google Scholar 

  64. Alves-Filho JC, de Freitas A, Russo M, Cunha F (2006) Toll-like receptor 4 signaling leads to neutrophil migration impairment in polymicrobial sepsis. Crit Care Med 34:461–470

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Radermacher.

Additional information

G. Albuszies and J. Vogt contributed equally to this article.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albuszies, G., Vogt, J., Wachter, U. et al. The effect of iNOS deletion on hepatic gluconeogenesis in hyperdynamic murine septic shock. Intensive Care Med 33, 1094–1101 (2007). https://doi.org/10.1007/s00134-007-0638-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-007-0638-7

Keywords

Navigation