Skip to main content
Log in

Muskuläre Biomechanik in der Sprunggelenkprothetik

Muscle biomechanics in total ankle replacement

  • Leitthema
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Das Ziel dieser orthopädisch-biomechanischen Studie war die Evaluation der Muskelfunktion von Patienten, bei welchen infolge unilateraler, schwerer Arthrose am oberen Sprunggelenk (OSG) eine Prothese eingesetzt wurde.

Bei 10 Patienten wurde vor und 1 Jahr nach Implantation einer OSG-Prothese eine orthopädische und biomechanische Untersuchung durchgeführt. Dabei wurden der Schmerzscore, der „American Orthopaedic Foot and Ankle Society“- (AOFAS-)Ankle-Score, der Bewegungsumfang (ROM) des Sprunggelenks und der Unterschied zwischen dem Umfang des Unterschenkels des betroffenen und des kontralateralen gesunden Beins gemessen. Die biomechanische Beurteilung bestand aus einer simultanen Messung des maximal willkürlichen, isometrischen Drehmoments bei Plantarflexion und Dorsalextension des OSG sowie aus einem Oberflächenelektromyogramm (EMG; mittlere Frequenz und Intensität) von 4 Unterschenkelmuskeln: Tibialis anterior (TA), Gastrocnemius medialis (GM), Soleus (SO) und Peroneus longus (PL).

Im Vergleich zur präoperativen Evaluation verbesserten sich der Schmerzscore von 6,7 auf 0,8 Punkte, der AOFAS-Ankle-Score von 35,6 auf 92,3 Punkte und der ROM nach Implantation der OSG-Prothese signifikant. Die mittlere Differenz des Unterschenkelumfangs zwischen den beiden Beinen nahm von 2,2 cm auf 1,4 cm ab. Dies war jedoch nicht signifikant. Das mittlere Drehmoment des betroffenen Sprunggelenks bei Dorsalextension stieg von 17,0 auf 25,8 Nm und bei Plantarflexion von 15,7 auf 24,6 Nm signifikant an. Bei der 1-Jahres-Nachkontrolle war die mittlere EMG-Frequenz in allen atrophischen Muskeln tiefer als bei den gesunden Muskeln der kontralateralen Seite. Ein Unterschied der mittleren EMG-Intensität zur kontralateralen gesunden Seite konnte nicht verifiziert werden.

Daraus kann gefolgert werden, dass Patienten mit symptomatischer OSG-Arthrose mit einer Prothese eine bessere Funktion erlangen; 1 Jahr nach der Operation entspricht dies jedoch nicht dem Ausmaß derjenigen des kontralateralen gesunden Beins.

Abstract

The purpose of this orthopaedic-biomechanical study was to evaluate the muscle function in total ankle replacement (TAR) patients 1 year after surgery.

Ten patients underwent a combined clinical and muscle biomechanical assessment prior to implantation and at the 1-year follow-up. Pain score, American Orthopaedic Foot and Ankle Society (AOFAS) ankle score, ankle range of motion (ROM), and calf circumference difference between the affected leg and contralateral healthy leg were assessed. Biomechanically, isometric maximal voluntary torque for ankle dorsiflexion and plantar flexion was measured simultaneously with surface electromyography of four lower leg muscles.

At follow-up, a significant improvement of the pain score (from 6.7 to 0.8 points), AOFAS ankle score (from 35.6 to 92.3 points), and ROM could be shown. Not significantly, the mean calf circumference difference between legs decreased from 2.2 to 1.4 cm. However, a significant increase was seen in the mean dorsiflexion (from 17.0 to 25.8 Nm) and plantar flexion torque (15.7 to 24.6 Nm) of the TAR-treated ankle. The mean EMG frequency content of the affected lower leg at TAR follow-up was lower than in the muscles of the contralateral healthy side. In contrast, the mean EMG intensity at TAR follow-up in side-comparison was statistically the same for all muscles.

Ankle OA patients have better muscle function with TAR than under the arthritic condition, but they do not reach the normal level of the contralateral healthy leg 1 year after surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Benedetti MG, Catani F, Bilotta TW, Marcacci M, Mariani E, Giannini S (2003) Muscle activation pattern and gait biomechanics after total knee replacement. Clin Biomech (Bristol, Avon) 18: 871–876

  2. Berman AT, Bosacco SJ, Israelite C (1991) Evaluation of total knee arthroplasty using isokinetic testing. Clin Orthop Relat Res 273: 106–113

    Google Scholar 

  3. Chumlea WC, Guo SS, Vellas B, Guigoz Y (1995) Techniques of assessing muscle mass and function (sarcopenia) for epidemiological studies of the elderly. J Gerontol A Biol Sci Med Sci 50: 45–51

    PubMed  Google Scholar 

  4. D’Lima DD, Poole C, Chadha H, Hermida JC, Mahar A, Colwell CW Jr (2001) Quadriceps moment arm and quadriceps forces after total knee arthroplasty. Clin Orthop Relat Res 2001: 213–220

    Google Scholar 

  5. Demottaz JD, Mazur JM, Thomas WH, Sledge CB, Simon SR (1979) Clinical study of total ankle replacement with gait analysis. A preliminary report. J Bone Joint Surg Am 61: 976–988

    PubMed  Google Scholar 

  6. Dyrby C, Chou LB, Andriacchi TP, Mann RA (2004) Functional evaluation of the Scandinavian Total Ankle Replacement. Foot Ankle Int 25: 377–381

    PubMed  Google Scholar 

  7. Farina D, Arendt-Nielsen L, Graven-Nielsen T (2005) Experimental muscle pain reduces initial motor unit discharge rates during sustained submaximal contractions. J Appl Physiol 98: 999–1005

    Article  PubMed  Google Scholar 

  8. Farina D, Macaluso A, Ferguson RA, De Vito G (2004) Effect of power, pedal rate, and force on average muscle fiber conduction velocity during cycling. J Appl Physiol 97: 2035–2041

    Article  PubMed  Google Scholar 

  9. Gopfert B, Valderrabano V, Hintermann B, Wirz D (2005) Measurement of the isometric dorsiflexion and plantar flexion force in the ankle joint. Biomed Tech (Berl) 50: 282–286

    Google Scholar 

  10. Hermens HJ, Freriks B, Merletti R et al. (1999) European Recommendations for Surface Electromyography (SENIAM). CD-ROM. Roessingh Research and Development b.v., Eschede, Netherlands

  11. Hintermann B, Valderrabano V, Dereymaeker G, Dick W (2004) The HINTEGRA Ankle: Rationale and Short-term Results of 122 Consecutive Ankles. Clin Orthop 424: 57–68

    PubMed  Google Scholar 

  12. Hurley MV (1999) The role of muscle weakness in the pathogenesis of osteoarthritis. Rheum Dis Clin North Am 25: 283–298

    Article  PubMed  Google Scholar 

  13. Hurley MV, Scott DL, Rees J, Newham DJ (1997) Sensorimotor changes and functional performance in patients with knee osteoarthritis. Ann Rheum Dis 56: 641–648

    PubMed  Google Scholar 

  14. Karlsson S, Gerdle B (2001) Mean frequency and signal amplitude of the surface EMG of the quadriceps muscles increase with increasing torque – a study using the continuous wavelet transform. J Electromyogr Kinesiol 11: 131–140

    Article  PubMed  Google Scholar 

  15. Karlsson S, Yu J, Akay M (1999) Enhancement of spectral analysis of myoelectric signals during static contractions using wavelet methods. IEEE Trans Biomed Eng 46: 670–684

    Article  PubMed  Google Scholar 

  16. Karlsson S, Yu J, Akay M (2000) Time-frequency analysis of myoelectric signals during dynamic contractions: a comparative study. IEEE Trans Biomed Eng 47: 228–238

    Article  PubMed  Google Scholar 

  17. Kent-Braun JA, Ng AV (1999) Specific strength and voluntary muscle activation in young and elderly women and men. J Appl Physiol 87: 22–29

    PubMed  Google Scholar 

  18. Kitaoka HB, Alexander IJ, Adelaar RS, Nunley JA, Myerson MS, Sanders M (1994) Clinical rating systems for the ankle-hindfoot, midfoot, hallux, and lesser toes. Foot Ankle Int 15: 349–353

    PubMed  Google Scholar 

  19. Kofoed H, Stürup J (1994) Comparison of ankle arthroplasty and arthrodesis. A prospective series with long-term follow-up. Foot 4: 6–9

    Article  Google Scholar 

  20. Lewek MD, Rudolph KS, Snyder-Mackler L (2004) Quadriceps femoris muscle weakness and activation failure in patients with symptomatic knee osteoarthritis. J Orthop Res 22: 110–115

    Article  PubMed  Google Scholar 

  21. Machner A, Pap G, Awiszus F (2002) Evaluation of quadriceps strength and voluntary activation after unicompartmental arthroplasty for medial osteoarthritis of the knee. J Orthop Res 20: 108–111

    Article  PubMed  Google Scholar 

  22. Masuda K, Masuda T, Sadoyama T, Inaki M, Katsuta S (1999) Changes in surface EMG parameters during static and dynamic fatiguing contractions. J Electromyogr Kinesiol 9: 39–46

    Article  PubMed  Google Scholar 

  23. Michelson JD, Schmidt GR, Mizel MS (2000) Kinematics of a total arthroplasty of the ankle: comparison to normal ankle motion. Foot Ankle Int 21: 278–284

    PubMed  Google Scholar 

  24. Mizner RL, Petterson SC, Stevens JE, Vandenborne K, Snyder-Mackler L (2005) Early quadriceps strength loss after total knee arthroplasty. The contributions of muscle atrophy and failure of voluntary muscle activation. J Bone Joint Surg Am 87: 1047–1053

    Article  PubMed  Google Scholar 

  25. Morrey BF, Wiedeman GP Jr (1980) Complications and long-term results of ankle arthrodeses following trauma. J Bone Joint Surg Am 62: 777–784

    PubMed  Google Scholar 

  26. Nakamura T, Suzuki K (1992) Muscular changes in osteoarthritis of the hip and knee. Nippon Seikeigeka Gakkai Zasshi 66: 467–475

    PubMed  Google Scholar 

  27. Reggiani B, Leardini A, Corazza F, Taylor M (2005) Finite element analysis of a total ankle replacement during the stance phase of gait. J Biomech 2005

  28. Rolland Y, Lauwers-Cances V, Cournot M et al. (2003) Sarcopenia, calf circumference, and physical function of elderly women: a cross-sectional study. J Am Geriatr Soc 51: 1120–1124

    Article  PubMed  Google Scholar 

  29. Rossi MD, Hasson S (2004) Lower-limb force production in individuals after unilateral total knee arthroplasty. Arch Phys Med Rehabil 85: 1279–1284

    Article  PubMed  Google Scholar 

  30. Rutherford OM, Jones DA, Newham DJ (1986) Clinical and experimental application of the percutaneous twitch superimposition technique for the study of human muscle activation. J Neurol Neurosurg Psychiatry 49: 1288–1291

    PubMed  Google Scholar 

  31. Shepstone TN, Tang JE, Dallaire S, Schuenke MD, Staron RS, Phillips SM (2005) Short-term high- vs. low-velocity isokinetic lengthening training results in greater hypertrophy of the elbow flexors in young men. J Appl Physiol 98: 1768–1776

    Article  PubMed  Google Scholar 

  32. Silva M, Shepherd EF, Jackson WO, Pratt JA, McClung CD, Schmalzried TP (2003) Knee strength after total knee arthroplasty. J Arthroplasty 18: 605–611

    Article  PubMed  Google Scholar 

  33. Simon SR, Trieshmann HW, Burdett RG, Ewald FC, Sledge CB (1983) Quantitative gait analysis after total knee arthroplasty for monarticular degenerative arthritis. J Bone Joint Surg Am 65: 605–613

    PubMed  Google Scholar 

  34. Sirca A, Susec-Michieli M (1980) Selective type II fibre muscular atrophy in patients with osteoarthritis of the hip. J Neurol Sci 44: 149–159

    Article  PubMed  Google Scholar 

  35. Valderrabano V, Hintermann B, Dick W (2004) Scandinavian total ankle replacement: A 3.7 year average followup of 65 patients. Clin Orthop 424: 47–56

    PubMed  Google Scholar 

  36. Valderrabano V, Hintermann B, Nigg BM, Stefanyshyn D, Stergiou P (2003) Kinematic changes after fusion and total replacement of the ankle: part 1: Range of motion. Foot Ankle Int 24: 881–887

    PubMed  Google Scholar 

  37. Valderrabano V, Hintermann B, Nigg BM, Stefanyshyn D, Stergiou P (2003) Kinematic changes after fusion and total replacement of the ankle: part 2: Movement transfer. Foot Ankle Int 24: 888–896

    PubMed  Google Scholar 

  38. Valderrabano V, Hintermann B, Nigg BM, Stefanyshyn D, Stergiou P (2003) Kinematic changes after fusion and total replacement of the ankle: part 3: Talar movement. Foot Ankle Int 24: 897–900

    PubMed  Google Scholar 

  39. von Tscharner V (2000) Intensity analysis in time-frequency space of surface myoelectric signals by wavelets of specified resolution. J Electromyogr Kinesiol 10: 433–445

    Article  PubMed  Google Scholar 

Download references

Danksagung

Diese Studie wurde durch den Schweizerischen Nationalfonds unterstützt (SNF Nr. PBZHB-106269).

Interessenkonflikt

Es besteht kein Interessenkonflikt. Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen. Die Präsentation des Themas ist unabhängig und die Darstellung der Inhalte produktneutral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Valderrabano.

Additional information

Dieser Beitrag wurde als Originalpublikation erstellt und begutachtet und ist aus formalen Gründen in das Leitthema dieser Ausgabe eingeordnet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valderrabano, V., Hintermann, B., von Tscharner, V. et al. Muskuläre Biomechanik in der Sprunggelenkprothetik. Orthopäde 35, 513–520 (2006). https://doi.org/10.1007/s00132-006-0938-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-006-0938-6

Schlüsselwörter

Keywords

Navigation