Skip to main content

Advertisement

Log in

Iron isotope and REE+Y composition of the Cauê banded iron formation and related iron ores of the Quadrilátero Ferrífero, Brazil

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The Minas Supergroup banded iron formations (BIFs) of the Brazilian Quadrilátero Ferrífero (QF) mineral province experienced multiple deformational events synchronous with hypogene mineralization, which resulted in the metamorphism of BIFs to itabirites and their upgrade to high-grade iron ore. Here, we present rare earth element and yttrium (REE+Y) compositions together with iron isotope ratios of itabirites and their host iron orebodies from 10 iron deposits to constrain environmental conditions during BIF deposition and the effects of hypogene iron enrichment. The REE+Y characteristics of itabirites (positive Eu anomaly and LREE depletion) indicate hydrothermal iron contribution to the Minas basin. Iron isotope data and Ce anomalies suggest BIFs were precipitated by a combination of anoxic biological-mediated ferrous iron oxidation and abiotic oxidation in an environment with free oxygen (such as an oxygen oasis), perhaps related to increase in oxygen concentrations before the Great Oxidation Event (GOE). The similarity of the REE+Y composition of the itabirites from the different QF deformational domains, as well as to other Superior-type BIFs, indicates that the metamorphism and synchronous hydrothermal mineralization did not significantly affect the geochemical signature of the original BIFs. However, iron isotope compositions of iron ore vary systematically between deformational domains of the QF, likely reflecting the specific mineralization features in each domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alkmim FF, Marshak S (1998) Transamazonian orogeny in the southern São Francisco craton region, Minas Gerais, Brazil: evidence for Paleoproterozoic collision and collapse in the Quadrilátero Ferrífero. Precambrian Res 90:29–58

    Article  Google Scholar 

  • Almeida FFM (1977) O Cráton do São Francisco. Rev Bras Geosci 7:349–364

    Google Scholar 

  • Anbar AD, Duan Y, Lyons TW, Arnold GL, Kendall B, Creaser RA, Kaufman AJ, Gordon GW, Scott C, Garvin J, Buick R (2007) A whiff of oxygen before the great oxidation event? Science 317:1903–1906

    Article  Google Scholar 

  • Babinski M, Chemale F Jr, Van Schumus WR (1995) The Pb/Pb age of the Minas Supergroup carbonate rocks, Quadrilátero Ferrífero, Brazil. Precambrian Res 72:235–245

    Article  Google Scholar 

  • Bau M, Dulski P (1996) Distribution of yttrium and rare-earth elements in the Penge and Kuruman Iron-Formations, Transvaal Supergroup. S Afr Precambrian Res 79:37–55

    Article  Google Scholar 

  • Bau M, Moller P (1993) Rare-earth element systematics of the chemically precipitated component in early Precambrian Fe Formations and the evolution of the terrestrial atmosphere–hydrosphere–lithosphere system. Geochim Cosmochim Acta 57:2239–2249

    Article  Google Scholar 

  • Beard BL, Johnson CM (2004) Fe isotope variations in the modern and ancient earth and other planetary bodies. In: Johnson CM, Beard BL, Albarède F (eds) Geochemistry of non-traditional stable isotopes. Rev. Mineral Geochem 55:319–35

  • Beard BL, Johnson CM, Von Damm KL (2003) Iron isotope constraints on Fe cycling and mass balance in oxygenated Earth oceans. Geology 31:629–632

    Article  Google Scholar 

  • Bekker A, Slack J, Planavsky N, Krapež B, Hofmann A, Konhauser KO, Rouxel OJ (2010) Iron formation: the sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes. Econ Geol 105:467–508

    Article  Google Scholar 

  • Beukes NJ, Gutzmer J (2008) Origin and paleoenvironmental significance of major iron formations at the Archean–Paleoproterozoic boundary. Soc Econ Geol 15:5–47

    Google Scholar 

  • Beukes NJ, Klein C (1990) Geochemistry and sedimentology of a facies transition from microbanded to granular iron-formation in the early Proterozoic Transvaal Supergroup, South Africa. Precambrian Res 47:99–139

    Article  Google Scholar 

  • Beukes NJ, Gutzmer J, Mukhopadhyay J (2002) The geology and genesis of high-grade hematite iron ore deposits. Proceedings of Iron Ore Conference, Perth, Australia: 23–29

  • Brito Neves BB (2011) The Paleoproterozoic in the South-American continent: diversity in the geologic time. J S Am Earth Sci 32:270–286

    Article  Google Scholar 

  • Cabral AR, Zeh A, Koglin N, Gomes AAS Jr, Viana DJ, Lehmann B (2012) Dating the Itabira iron formation, Quadrilátero Ferrífero of Minas Gerais, Brazil, at 2.65 Ga: depositional U Pb age of zircon from a metavolcanic layer. Precambrian Res 204–205:40–45

    Article  Google Scholar 

  • Cabral AR, Lehmann B, Gomes AAS Jr, Paˇsava J (2016) Episodic negative anomalies of cerium at the depositional onset of the 2.65-Ga Itabira iron formation, Quadrilátero Ferrífero of Minas Gerais, Brazil. Short communication. Precambrian Res 276:101–109

    Article  Google Scholar 

  • Canfield DE (2005) The early history of atmospheric oxygen: homage to Robert M. Garrels. Ann Rev Earth Planet Sci 33:1–36

  • Chemale F Jr, Rosière CA, Endo I (1994) The tectonic evolution of the Quadrilátero Ferrífero, Minas Gerais, Brazil. Precambrian Res 65:25–54

    Article  Google Scholar 

  • Cheng Y, Mao J, Zhu X, Wang Y (2015) Iron isotope fractionation during supergene weathering process and its application to constrain ore genesis in Gaosong deposit, Gejiu district, SW China. Gondwana Res 27:1283–1291

  • Cloud P (1973) Paleoecological significance of banded iron-formation. Econ Geol 68:1135–1143

    Article  Google Scholar 

  • Clout JMF, Simonson BM (2005) Precambrian iron formation and iron formation-hosted iron ore deposits. Econ Geol 100:643–679

    Google Scholar 

  • Cox GM, Halverson GP, Minarik WG, Le Heron DP, Macdonald FA, Bellefroid EJ, Strauss JV (2013) Neoproterozoic iron formation: an evaluation of its temporal, environmental and tectonic significance. Chem Geol 362:232–249

    Article  Google Scholar 

  • Cox GM, Halverson GP, Poirier A, Le Heron D, Strauss JV, Stevenson R (2015) A model for Cryogenian iron formation. Earth Planet Sci Lett (in press)

  • Czaja AD, Johnson CM, Beard BL, Roden EE, Li W, Moorbath S (2013) Biological Fe oxidation controlled deposition of banded iron formation in the ca. 3770 Ma Isua Supracrustal Belt (West Greenland). Earth Planet Sci Lett 363:192–203

    Article  Google Scholar 

  • Dauphas N, Van Zuilen M, Busigny V, Lepland A, Wadhwa M, Janney PE (2007) Iron isotope, major and trace element characterization of early Archean supracrustal rocks from SW Greenland: protolith identification and metamorphic overprint. Geochim Cosmochim Acta 71:4745–4770

    Article  Google Scholar 

  • Ding K, Seyfried WE Jr (1992) Determination of Fe-Cl complexing in the low pressure supercritical region (NaCl fluid): iron solubility constraints on pH of subseafloor hydrothermal fluids. Geochim Cosmochim Acta 56:3681–3692

    Article  Google Scholar 

  • Dorr JVN (1969) Physiographic, stratigraphic and structural development of the Quadrilátero Ferrífero, Minas Gerais. US Geol Surv Prof Pap 641-A:110

    Google Scholar 

  • Dymek RF, Klein C (1988) Chemistry, petrology and origin of banded iron-formation lithologies from the 3800 Ma Isua Supra- crustal Belt, West Greenland. Precambrian Res 39:247–302

    Article  Google Scholar 

  • Eschwege WL (1822) Geognostisches Gemälde von Brasilien und wahrscheinliches Muttergestein der Diamanten. Weimar, p 44

  • Fabre S, Nédélec A, Poitrasson F, Strauss H, Thomazo C, Nogueira A (2011) Iron and sulphur isotopes from the Carajás mining province (Pará, Brazil): implications for the oxidation of the ocean and the atmosphere across the Archaean–Proterozoic transition. Chem Geol 289:124–139

    Article  Google Scholar 

  • Fein JB, Hemley JJ, D’Angelo WM, Komninou A, Sverjensky DA (1992) Experimental study of iron-chloride complexing in hydrothermal fluids. Geochim Cosmochim Acta 56:3179–3190

    Article  Google Scholar 

  • Figueiredo e Silva RC, Lobato LM, Rosière CA, Hagamann SH, Zucchetti M, Baars FJ, Morais RA (2008) Hydrothermal origin for the jaspilite-hosted, giant Serra Norte iron ore deposits in the Carajás Mineral Province, Pará State, Brazil. Econ Geol Bull Soc Econ Geol 15:255–290

    Google Scholar 

  • Figueiredo E, Silva RC, Hagemann S, Lobato LM, Rosiere CA, Banks DA, Davidson GJ, Vennemann T, Hergt J (2013) Hydrothermal fluid processes and evolution of the giant Serra Norte jaspilite-hosted iron ore deposits, Carajas Mineral Province, Brazil. Econ Geol Bull Soc Econ Geol 108:739–779

    Article  Google Scholar 

  • Frost CD, von Blanckenburg F, Schoenberg R, Frost BR, Swapp SM (2007) Preservation of Fe isotope heterogeneities during diagenesis and metamorphism of banded iron formation. Contrib Mineral Petr 153:211–235

    Article  Google Scholar 

  • Gross GA (1980) A classification of iron formations based on depositional environments. Can Mineral 18:215–222

    Google Scholar 

  • Guba I (1982) Tektonik, texturen und mineralogie der prakambrischen eisenerze und nebengesteinsserien der lagerstatten Morro Agudo im NE des Quadrilatero Ferrilero. Ph.D. thesis, T.U.Clausthal, Minas Gerais, Brasilien

  • Hagemann SG, Angerer T, Duuring P, Rosière CA, Figueiredo e Silva RC, Lobato L, Hensler AS, Walde DHG (2016) BIF-hosted iron mineral system: a review. Ore Geol Rev 76:317–359

  • Halverson GP, Poitrasson F, Hoffman PF, Nédélec A, Montel JM, Kirby J (2011) Fe isotope and trace element geochemistry of the Neoproterozoic syn-glacial Rapitan iron formation. Earth Planet Sci Lett 309:100–112

    Article  Google Scholar 

  • Hartmann LA, Endo I, Suita MTF, Santos JOS, Frantz JC, Carneiro MA, Mcnaughton NJ, Barley ME (2006) Provenance and age delimitation of Quadrilátero Ferrífero sandstones based on zircon U Pb isotopes. J S Am Earth Sci 20:273–285

    Article  Google Scholar 

  • Hensler AS, Hagemann SG, Brown PE, Rosière CA (2013) Using oxygen isotope chemistry to track hydrothermal processes and fluid sources in itabirite-hosted iron ore deposits in the Quadrilátero Ferrífero, Minas Gerais, Brazil. Miner Deposita 49:293–311

    Article  Google Scholar 

  • Hensler AS, Hagemann SG, Rosière CA, Angerer T, Gilbert S (2015) Hydrothermal and metamorphic fluid-rock interaction associated with hypogene hard iron ore mineralization in the Quadrilátero Ferrífero, Brazil: implications from in-situ laser ablation ICP-MS iron oxide chemistry. Ore Geol Rev 69:325–351

    Article  Google Scholar 

  • Herz N (1978) Metamorphic rocks of the Quadrilátero Ferrífero, Minas Gerais, Brazil. US Geol Surv Prof Pap 641-C:1–81

    Google Scholar 

  • Hoffman PF, Schrag DP (2002) The snowball Earth hypothesis: testing the limits of global change. Terra Nov. 14:129–155

  • Holland HD (2005) Sedimentary mineral deposits and the evolution of earth’s near-surface environments. Econ Geol 100:1489–1509

    Article  Google Scholar 

  • Holland HD (2006) The oxygenation of the atmosphere and oceans. Philos Trans R Soc B 361:903–915

    Article  Google Scholar 

  • Horn I, von Blanckenburg F, Schoenberg R, Steinhoefel G, Markl G (2006) In situ iron isotope ratio determination using UV-femtosecond laser ablation with application to hydrothermal ore formation processes. Geochim Cosmochim Acta 70:3677–3688

    Article  Google Scholar 

  • Ilouga DCI, Suh CE, Ghogomu R, Tanwi GR (2013) Textures and rare earth elements composition of banded iron formations (BIF) at Njweng Prospect, Mbalam Iron Ore District, Southern Cameroon. Int J Geosci 4:146–165

    Article  Google Scholar 

  • James HL (1983) Distribution of banded iron-formation in space and time. In: Trendall AF, Morris RC (eds) Iron-formation: facts and problems. Elsevier, pp 471–490

  • Johnson CM, Beard B (2006) Fe isotopes: an emerging technique in understanding modern and ancient biogeochemical cycles. GSA Today 16:4–10

    Article  Google Scholar 

  • Johnson CM, Beard BL, Beukes NJ, Klein C, O’Leary JM (2003) Ancient geochemical cycling in the Earth as inferred from Fe isotope studies of banded iron formations from the Transvaal Craton. Contrib Mineral Petrol 144:523–547

    Article  Google Scholar 

  • Johnson CM, Beard BL, Klein C, Beukes NJ, Roden EE (2008) Iron isotopes constrain biologic and abiologic processes in banded iron formation genesis. Geochim Cosmochim Acta 72:151–169

    Article  Google Scholar 

  • Kasting JF (1993) Earth’s early atmosphere. Science 259:920–926

    Article  Google Scholar 

  • Kato Y, Yamaguchi KE, Ohmoto H (2006) Rare earth elements in Precambrian banded Fe formations: secular changes of Ce and Eu anomalies and evolution of atmospheric oxygen. In: Kessler SE, Ohmoto H (eds) Evolution of the atmosphere, hydrosphere, and biosphere on early earth: constraints from ore deposits. 198:269–289

  • Klein C (2005) Some Precambrian banded iron-formations (BIFs) from around the world: their age, geologic setting, mineralogy, metamorphism, geochemistry, and origin. Am Mineral 90:1473–1499

    Article  Google Scholar 

  • Klein C, Beukes NJ (1989) Geochemistry and sedimentology of a facies transition from limestone to iron-formation deposition in the Early Proterozoic Transvaal Supergroup, South Africa. Econ Geol 84:1733–1774

    Article  Google Scholar 

  • Klein C, Beukes NJ (1992) Proterozoic iron formations. In: Condie KC (ed) Proterozoic crustal evolution. Elsevier, Amsterdam, pp 383–418

    Chapter  Google Scholar 

  • Klein C, Ladeira EA (2000) Geochemistry and petrology of some Proterozoic banded iron-formations of the Quadrilátero Ferrífero, Minas Gerais, Brazil. Econ Geol 95:405–428

    Article  Google Scholar 

  • Kock MO, Evans DAD, Gutzmer J, Beukes NJ, Dorland HC (2008) Origin and timing of banded iron formation-hosted high-grade hard hematite deposits—a paleomagnetic approach. Rev Econ Geol 15:49–71

    Google Scholar 

  • Koglin N, Zeh A, Cabral AR, Seabra Gomes Jr AA, Corrêa Neto AV, Brunetto WJ, Galbiatti HF (2014) Depositional age and sediment source of the auriferous Moeda Formation, Quadrilátero Ferrífero of Minas Gerais, Brazil: new constraints from U–Pb–Hf isotopes in zircon and xenotime. Precambrian Res 255:96–108

    Article  Google Scholar 

  • Levasseur S, Frank M, Hein JR, Halliday AN (2004) The global variation in the iron isotope composition of marine hydrogenetic ferromanganese deposits: implications for seawater chemistry? Earth Planet Sci Lett 224:91–105

    Article  Google Scholar 

  • Li W, Beard BL, Johnson CM (2015) Biologically recycled continental iron is a major component in banded iron formations. Proc Natl Acad Sci U S A 112:8193–8198

    Article  Google Scholar 

  • Lobato LM, Figueiredo e Silva RC, Hagemann SH, Zucchetti M, Thorne W (2008) Hypogene alteration associated with high-grade BIF-related iron ore. Econ Geol Bull Soc Econ Geol 15:107–128

    Google Scholar 

  • Machado N, Schrank A, Noce CM, Gauthier G (1996) Ages of detrital zircon from Archean Paleoproterozoic sequences: implications for greenstone belt setting and evolution of a Transamazonian foreland basin in Quadrilátero Ferrífero, southeast Brazil. Earth Planet Sci Lett 141:259–276

    Article  Google Scholar 

  • Markl G, von Blanckenburg F, Wagner T (2006) Iron isotope fractionation during hydrothermal ore deposition and alteration. Geochim Cosmochim Acta 70:3011–3030

    Article  Google Scholar 

  • McLennan SB (1989) Rare earth elements in sedimentary rocks. Influence of provenance and sedimentary processes. In: Lipin BR, McKay GA (eds) Geochemistry and mineralogy of the rare earth elements. Miner Soc Am:169–200

  • Mendes M, Lagoeiro L (2012) Microstructures, crystallographic fabric development and deformation mechanisms in natural hematite aggregates deformed under varied metamorphic conditions. J Struct Geol 40:29–43

    Article  Google Scholar 

  • Ohmoto H, Watanabe Y, Yamaguchi KE, Naraoka H, Kakegawa T, Haruna M, Hayashi K, Kato Y (2006) Chemical and biological evolution of early Earth: constraints from banded iron-formations. In: Kessler SE, Ohmoto H (eds) Evolution of the atmosphere, hydrosphere, and biosphere on early earth: constraints from ore deposits. 198:291–331

  • Pires FRM (1995) Textural and mineralogical variations during the metamorphism of the Proterozoic Itabira Iron Formation in the Quadrilátero Ferrífero, Minas Gerais, Brazil. An Acad Bras Cienc 67:77–105

    Google Scholar 

  • Pires FRM (2003) Distribution of hard hematite ore at the Quadrilatero Ferrifero, Minas Gerais, Brazil and its possible genetic significance. Trans Inst Min Metall Sect B Appl Earth Sci 112:31–37

    Article  Google Scholar 

  • Planavsky N, Bekker A, Rouxel OJ, Knudsen A, Lyons TW (2010) Rare earth element and yttrium compositions of Archean and Paleoproterozoic iron formations revisited: new perspectives on the significance and mechanisms of deposition. Geochim Cosmochim Acta 74:6387–6405

    Article  Google Scholar 

  • Planavsky N, Rouxel OJ, Bekker A, Hofmann A, Little CTS, Lyons TW (2012) Iron isotope composition of some Archean and Proterozoic iron formations. Geochim Cosmochim Acta 80:158–169

    Article  Google Scholar 

  • Poitrasson F (2006) On the iron isotope homogeneity level of the continental crust. Chem Geol 235:195–200

    Article  Google Scholar 

  • Rosière CA, Rios FJ (2004) The origin of hematite in high-grade iron ores based on infrared microscopy and fluid inclusion studies: the example of the Conceição Mine, Quadrilátero Ferrífero, Brazil. Econ Geol 99:611–624

    Article  Google Scholar 

  • Rosière CA, Chemale F Jr, Guimarães V (1993) Um modelo para a evolução microestrutural dos minérios de ferro do Quadrilátero Ferrífero. Parte 1: estruturas e recristalização. Geonomos 1:65–84

    Article  Google Scholar 

  • Rosière CA, Siemes H, Quade H, Brokmeier HG, Jansen EM (2001) Microstructures, textures and deformation mechanisms in hematite. J Struct Geol 23:1429–1440

    Article  Google Scholar 

  • Rosière CA, Spier CA, Rios FJ, Suckau VE (2008) The itabirites of the Quadrilátero Ferrífero and related high-grade iron ore deposits: an overview. Soc Econ Geol Rev 15:223–254

    Google Scholar 

  • Rosière CA, Sanglard JCD, Santos JOS, Mcnaughton N, Fletcher IR, Suckau VE., Spier CA (2012) Structural control and age of the high-grade iron ore of the Quadrilátero Ferrífero, Brazil. Peruvian Geological Congress and SEG 2012 Conference. Lima, Peru

  • Rouxel O, Dobbek N, Ludden J, Fouquet Y (2003) Iron isotope fractionation during oceanic crust alteration. Chem Geol 202:155–182

    Article  Google Scholar 

  • Rouxel OJ, Bekker A, Edwards KJ (2005) Iron isotope constraints on the Archean and Paleoproterozoic ocean redox state. Science 307:1088–1090

    Article  Google Scholar 

  • Sanglard JCD, Rosière CA, Santos JOS, McNaughton NJ, Fletcher IR (2014) A estrutura do segmento oeste da Serra do Curral, Quadrilátero Ferrífero, e o controle tectônico das acumulações compactas de alto teor em Fe. Geol USP Sér cient 14:81–95

    Article  Google Scholar 

  • Saunier G, Pokrovski GS, Poitrasson F (2011) First experimental determination of iron isotope fractionation between hematite and aqueous solution at hydrothermal conditions. Geochim Cosmochim Acta 75:6629–6654

    Article  Google Scholar 

  • Schoenberg R, Marks MAW, Schuessler JA, von Blanckenburg F, Markl G (2009) Fe isotope systematics of coexisting amphibole and pyroxene in the alkaline igneous rock suite of the Ilímaussaq Complex, South Greenland. Chem Geol 258:65–77

    Article  Google Scholar 

  • Selmi M, Lagoeiro LE, Endo I (2009) Geochemistry of hematitite and itabirite, Quadrilátero Ferrífero, Brazil. Revista da Escola de Minas 62:35–43

    Article  Google Scholar 

  • Severmann S, Johnson CM, Beard BL, German CR, Edmonds HN, Chiba H, Green DRH (2004) The effect of plume processes on the Fe isotope composition of hydrothermally derived Fe in the deep ocean as inferred from the Rainbow vent site, Mid-Atlantic Ridge, 36 degrees 140 N. Earth Planet Sci Lett 225:63–76

    Article  Google Scholar 

  • Skulan JL, Beard BL, Johnson CM (2002) Kinetic and equilibrium Fe isotope fractionation between aqueous Fe(III) and hematite. Geochim Cosmochim Acta 66:2995–3015

    Article  Google Scholar 

  • Spier CA, Oliveira SMBD, Rosière CA (2003) Geology and geochemistry of the Águas Claras and Pico Iron Mines, Quadrilátero Ferrífero, Minas Gerais, Brazil. Miner Deposita 38:751–774

    Article  Google Scholar 

  • Spier CA, Oliveira SMB, Sial AN, Rios FJ (2007) Geochemistry and genesis of the banded iron formations of the Cauê Formation, Quadrilátero Ferrífero, Minas Gerais, Brazil. Precambrian Res 152:170–206

    Article  Google Scholar 

  • Spier CA, Oliveira SMB, Rosière CA, Ardisson JD (2008) Mineralogy and trace-element geochemistry of the high-grade iron ores of the Aguas Claras mine and comparison with the Capão Xavier and Tamanduá iron deposits, Quadrilatero Ferrffero. Mineral Deposita 43:229–254

    Article  Google Scholar 

  • Taylor D, Dalstra HJ, Harding AE, Broadbent GC, Barley ME (2001) Genesis of high-grade hematite orebodies of the Hamersley Province, Western Australia. Econ Geol 96:837–878

    Google Scholar 

  • Teng FZ, Dauphas N, Helz RT (2008) Iron isotope fractionation during magmatic differentiation in Kilauea Iki Lava Lake. Science 320:1620–1622

    Article  Google Scholar 

  • Teutsch N, Schmid M, Müller B, Halliday AN, Bérgmann H, Wehrli B (2009) Large iron isotope fractionation at the oxic–anoxic boundary in Lake Nyos. Earth Planet Sci Lett 285:52–60

    Article  Google Scholar 

  • Weyer S (2008) What drives iron isotope fractionation in magma? Science 320:1600–1601

    Article  Google Scholar 

  • Whitehouse MJ, Fedo CM (2007) Microscale heterogeneity of Fe isotopes in >3.71 Ga banded iron formation from the Isua Greenstone Belt, southwest Greenland. Geology 35:719–722

    Article  Google Scholar 

  • Williams HM, Peslier AH, McCammon C, Halliday AN, Levasseur S, Teutsch N, Burg JP (2005) Systematic iron isotope variations in mantle rocks and minerals: the effects of partial melting and oxygen fugacity. Earth Planet Sci Lett 235:435–452

    Article  Google Scholar 

  • Yardley B (2005) Metal concentrations in crustal fluids and their relationship to ore formation. Econ Geol 100:613–632

    Google Scholar 

Download references

Acknowledgments

This research is the result of the Ph.D. thesis by the first author at the Universidade Federal de Minas Gerais-UFMG, defended in 2015, which was partly financed by the Post-graduate Program of the Geology Department-UFMG, the Society of Economic Geologists (SEG Student Research McKinstry Grant 2014 Funding), and the Science without Borders Program, through the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior agency (CAPES scholarship–Proc. BEX 10621/13-0). We thank Fundação de Amparo à Pesquisa do Estado de Minas Gerais (Fapemig) and CAPES, which granted the student’s scholarship. LML and CAR acknowledge grants from the CNPq. GPH acknowledges support from NSERC and FRQNT. We are also grateful to Victor Suckau, Giubraz Mendes (Gerdau), Henrile Meireles (CSN), and Luiz Vannucci, Flávio Leocádio, Felipe Moreira, and Dayse Araújo (Vallourec) for their logistic and technical support during sampling in the mining areas. Special thanks are due to K. Gonçalves (CDM-Vale), A. Poirier (GEOTOP-UQÀM), and K. Fenselau for their support and R. Figueiredo e Silva, S. Wörndle-Quoëx (McGill), and J. Roncato (UFMG) for valuable discussions. The manuscript was greatly improved by reviews from  Dr. S Halder and an anonymous reviewer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mônica Mendes.

Additional information

Editorial handling: B. Lehmann

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendes, M., Lobato, L.M., Kunzmann, M. et al. Iron isotope and REE+Y composition of the Cauê banded iron formation and related iron ores of the Quadrilátero Ferrífero, Brazil. Miner Deposita 52, 159–180 (2017). https://doi.org/10.1007/s00126-016-0649-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-016-0649-9

Keywords

Navigation