Skip to main content
Log in

Improved Brassica oleracea JZS assembly reveals significant changing of LTR-RT dynamics in different morphotypes

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

A Correction to this article was published on 27 November 2023

This article has been updated

Abstract

Brassica oleracea is an important vegetable crop that has provided ancestor genomes of the two most important Brassica oil crops, Brassica napus and Brassica carinata. The current B. oleracea reference genome (JZS, also named 02–12) displays problems of large mis-assemblies, low sequence continuity, and low assembly integrity, thus limiting genomic analysis. We reported an updated assembly of the B. oleracea reference genome (JZS v2) obtained through single-molecule sequencing and chromosome conformation capture technologies. We assembled an additional 83.16 Mb of genomic sequences, and the updated genome features a contig N50 size of 2.37 Mb, representing an ~ 88-fold improvement. We detected a new round of long terminal repeat retrotransposon (LTR-RT) burst in the new assembly. Comparative analysis with the reported genome sequences of two other genomes of B. oleracea (TO1000 and HDEM) identified extensive gene order and gene structural variation. In addition, we found that the genome-specific amplification of Gypsy-like LTR-RTs occurred around 0–1 million years ago (MYA). In particular, the athila, tat, and Del families were extensively amplified in JZS around 0–1 MYA. Moreover, we identified that the syntenic genes were modified due to the insertion of genome-specific LTR-RTs. These results indicated that the genome-specific LTR-RT dynamics were associated with genome diversification in B. oleracea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Code availability

The misjoins correction pipeline can be downloaded from https://github.com/caixu0518/MisjoinDetect.

Data availability

The genome assembly and gene annotations are freely available through BRAD website (https://brassicadb.org/brad/datasets/pub/Genomes/Brassica_oleracea/V2.0/) or in the Genome Warehouse database (Members 2019) under bioproject number (PRJCA001832) and accession number GWHAASO00000000 (https://bigd.big.ac.cn/gwh).

Change history

References

  • Allen GC, Flores-Vergara MA, Krasynanski S, Kumar S, Thompson WF (2006) A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nat Protoc 1:2320–2325

    Article  CAS  PubMed  Google Scholar 

  • Ammiraju JS, Zuccolo A, Yu Y, Song X, Piegu B, Chevalier F, Walling JG, Ma J, Talag J, Brar DS, SanMiguel PJ, Jiang N, Jackson SA, Panaud O, Wing RA (2007) Evolutionary dynamics of an ancient retrotransposon family provides insights into evolution of genome size in the genus Oryza. Plant J Cell Mol Biol 52:342–351

    Article  CAS  Google Scholar 

  • Belser C, Istace B, Denis E, Dubarry M, Baurens FC, Falentin C, Genete M, Berrabah W, Chevre AM, Delourme R, Deniot G, Denoeud F, Duffe P, Engelen S, Lemainque A, Manzanares-Dauleux M, Martin G, Morice J, Noel B, Vekemans X, D'Hont A, Rousseau-Gueutin M, Barbe V, Cruaud C, Wincker P, Aury JM (2018) Chromosome-scale assemblies of plant genomes using nanopore long reads and optical maps. Nature plants 4:879–887

    Article  CAS  PubMed  Google Scholar 

  • Besemer J, Borodovsky M (2005) GeneMark: web software for gene finding in prokaryotes, eukaryotes and viruses. Nucleic Acids Res 33:W451–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birney E, Clamp M, Durbin R (2004) GeneWise and Genomewise. Genome Res 14:988–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burton JN, Adey A, Patwardhan RP, Qiu R, Kitzman JO, Shendure J (2013) Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nat Biotechnol 31:1119–1125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabanettes F, Klopp C (2018) D-GENIES: dot plot large genomes in an interactive, efficient and simple way. PeerJ 6:e4958

    Article  PubMed  PubMed Central  Google Scholar 

  • Cai X, Cui Y, Zhang L, Wu J, Liang J, Cheng L, Wang X, Cheng F (2018) Hotspots of Independent and Multiple Rounds of LTR-retrotransposon Bursts in Brassica Species. Hortic Plant J 4:165–174

    Article  Google Scholar 

  • Chen S, Zhou Y, Chen Y, Gu J (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884–i890

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng F, Sun R, Hou X, Zheng H, Zhang F, Zhang Y, Liu B, Liang J, Zhuang M, Liu Y, Liu D, Wang X, Li P, Liu Y, Lin K, Bucher J, Zhang N, Wang Y, Wang H, Deng J, Liao Y, Wei K, Zhang X, Fu L, Hu Y, Liu J, Cai C, Zhang S, Zhang S, Li F, Zhang H, Zhang J, Guo N, Liu Z, Liu J, Sun C, Ma Y, Zhang H, Cui Y, Freeling MR, Borm T, Bonnema G, Wu J, Wang X (2016) Subgenome parallel selection is associated with morphotype diversification and convergent crop domestication in Brassica rapa and Brassica oleracea. Nat Genet 48:1218–1224

    Article  CAS  PubMed  Google Scholar 

  • Cheng F, Wu J, Fang L, Sun S, Liu B, Lin K, Bonnema G, Wang X (2012a) Biased gene fractionation and dominant gene expression among the subgenomes of Brassica rapa. PLoS ONE 7:e36442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng F, Wu J, Fang L, Wang X (2012b) Syntenic gene analysis between Brassica rapa and other Brassicaceae species. Front Plant Sci 3:198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du J, Tian Z, Bowen NJ, Schmutz J, Shoemaker RC, Ma J (2010) Bifurcation and enhancement of autonomous-nonautonomous retrotransposon partnership through LTR Swapping in soybean. Plant Cell 22:48–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudchenko O, Batra SS, Omer AD, Nyquist SK, Hoeger M, Durand NC, Shamim MS, Machol I, Lander ES, Aiden AP, Aiden EL (2017) De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356:92–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durand NC, Shamim MS, Machol I, Rao SS, Huntley MH, Lander ES, Aiden EL (2016) Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell systems 3:95–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emms DM, Kelly S (2015) OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol 16:157

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghurye J, Pop M, Koren S, Bickhart D, Chin CS (2017) Scaffolding of long read assemblies using long range contact information. BMC genomics 18:527

    Article  PubMed  PubMed Central  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grob S, Schmid MW, Grossniklaus U (2014) Hi-C analysis in Arabidopsis identifies the KNOT, a structure with similarities to the flamenco locus of Drosophila. Mol Cell 55:678–693

    Article  CAS  PubMed  Google Scholar 

  • Haas BJ, Delcher AL, Mount SM, Wortman JR, Smith RK Jr, Hannick LI, Maiti R, Ronning CM, Rusch DB, Town CD, Salzberg SL, White O (2003) Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res 31:5654–5666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haas BJ, Salzberg SL, Zhu W, Pertea M, Allen JE, Orvis J, White O, Buell CR, Wortman JR (2008) Automated eukaryotic gene structure annotation using evidencemodeler and the program to assemble spliced alignments. Genome Biol 9:R7

    Article  PubMed  PubMed Central  Google Scholar 

  • Hawkins JS, Kim H, Nason JD, Wing RA, Wendel JF (2006) Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium. Genome Res 16:1252–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoen DR, Park KC, Elrouby N, Yu Z, Mohabir N, Cowan RK, Bureau TE (2006) Transposon-mediated expansion and diversification of a family of ULP-like genes. Mol Biol Evol 23:1254–1268

    Article  CAS  PubMed  Google Scholar 

  • Hunter S, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, Bork P, Das U, Daugherty L, Duquenne L, Finn RD, Gough J, Haft D, Hulo N, Kahn D, Kelly E, Laugraud A, Letunic I, Lonsdale D, Lopez R, Madera M, Maslen J, McAnulla C, McDowall J, Mistry J, Mitchell A, Mulder N, Natale D, Orengo C, Quinn AF, Selengut JD, Sigrist CJ, Thimma M, Thomas PD, Valentin F, Wilson D, Wu CH, Yeats C (2009) InterPro: the integrative protein signature database. Nucleic Acids Res 37:D211–215

    Article  CAS  PubMed  Google Scholar 

  • Jiao WB, Schneeberger K (2017) The impact of third generation genomic technologies on plant genome assembly. Curr Opin Plant Biol 36:64–70

    Article  CAS  PubMed  Google Scholar 

  • Katoh K, Kuma K, Toh H, Miyata T (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33:511–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S, Park J, Yeom SI, Kim YM, Seo E, Kim KT, Kim MS, Lee JM, Cheong K, Shin HS, Kim SB, Han K, Lee J, Park M, Lee HA, Lee HY, Lee Y, Oh S, Lee JH, Choi E, Choi E, Lee SE, Jeon J, Kim H, Choi G, Song H, Lee J, Lee SC, Kwon JK, Lee HY, Koo N, Hong Y, Kim RW, Kang WH, Huh JH, Kang BC, Yang TJ, Lee YH, Bennetzen JL, Choi D (2017) New reference genome sequences of hot pepper reveal the massive evolution of plant disease-resistance genes by retroduplication. Genome Biol 18:210

    Article  PubMed  PubMed Central  Google Scholar 

  • Kong H, Landherr LL, Frohlich MW, Leebens-Mack J, Ma H, dePamphilis CW (2007) Patterns of gene duplication in the plant SKP1 gene family in angiosperms: evidence for multiple mechanisms of rapid gene birth. Plant J Cell Mol Biol 50:873–885

    Article  CAS  Google Scholar 

  • Koo DH, Hong CP, Batley J, Chung YS, Edwards D, Bang JW, Hur Y, Lim YP (2011) Rapid divergence of repetitive DNAs in Brassica relatives. Genomics 97:173–185

    Article  CAS  PubMed  Google Scholar 

  • Kopsell DA, Kopsell DE (2006) Accumulation and bioavailability of dietary carotenoids in vegetable crops. Trends Plant Sci 11:499–507

    Article  CAS  PubMed  Google Scholar 

  • Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL (2004) Versatile and open software for comparing large genomes. Genome Biol 5:R12

    Article  PubMed  PubMed Central  Google Scholar 

  • Lim KB, Yang TJ, Hwang YJ, Kim JS, Park JY, Kwon SJ, Kim J, Choi BS, Lim MH, Jin M, Kim HI, de Jong H, Bancroft I, Lim Y, Park BS (2007) Characterization of the centromere and peri-centromere retrotransposons in Brassica rapa and their distribution in related Brassica species. Plant J Cell Mol Biol 49:173–183

    Article  CAS  Google Scholar 

  • Liu S, Liu Y, Yang X, Tong C, Edwards D, Parkin IA, Zhao M, Ma J, Yu J, Huang S, Wang X, Wang J, Lu K, Fang Z, Bancroft I, Yang TJ, Hu Q, Wang X, Yue Z, Li H, Yang L, Wu J, Zhou Q, Wang W, King GJ, Pires JC, Lu C, Wu Z, Sampath P, Wang Z, Guo H, Pan S, Yang L, Min J, Zhang D, Jin D, Li W, Belcram H, Tu J, Guan M, Qi C, Du D, Li J, Jiang L, Batley J, Sharpe AG, Park BS, Ruperao P, Cheng F, Waminal NE, Huang Y, Dong C, Wang L, Li J, Hu Z, Zhuang M, Huang Y, Huang J, Shi J, Mei D, Liu J, Lee TH, Wang J, Jin H, Li Z, Li X, Zhang J, Xiao L, Zhou Y, Liu Z, Liu X, Qin R, Tang X, Liu W, Wang Y, Zhang Y, Lee J, Kim HH, Denoeud F, Xu X, Liang X, Hua W, Wang X, Wang J, Chalhoub B, Paterson AH (2014) The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat commun 5:3930

    Article  CAS  PubMed  Google Scholar 

  • Members BIGDC (2019) Database resources of the BIG Data Center in 2019. Nucleic Acids Res 47:D8–D14

    Article  Google Scholar 

  • Morgante M, Brunner S, Pea G, Fengler K, Zuccolo A, Rafalski A (2005) Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize. Nat Genet 37:997–1002

    Article  CAS  PubMed  Google Scholar 

  • Nagaharu U (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot 7(7):389–452

    Google Scholar 

  • Naito K, Cho E, Yang G, Campbell MA, Yano K, Okumoto Y, Tanisaka T, Wessler SR (2006) Dramatic amplification of a rice transposable element during recent domestication. Proc Natl Acad Sci USA 103:17620–17625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ou S, Chen J, Jiang N (2018) Assessing genome assembly quality using the LTR Assembly Index (LAI). Nucleic Acids Res 46:e126

    PubMed  PubMed Central  Google Scholar 

  • Ou S, Jiang N (2018) LTR_retriever: A Highly Accurate and Sensitive Program for Identification of Long Terminal Repeat Retrotransposons. Plant Physiol 176:1410–1422

    Article  CAS  PubMed  Google Scholar 

  • Ou S, Su W, Liao Y, Chougule K, Agda JRA, Hellinga AJ, Lugo CSB, Elliott TA, Ware D, Peterson T, Jiang N, Hirsch CN, Hufford MB (2019) Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline. Genome Biol 20:275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan Y, Bo K, Cheng Z, Weng Y (2015) The loss-of-function GLABROUS 3 mutation in cucumber is due to LTR-retrotransposon insertion in a class IV HD-ZIP transcription factor gene CsGL3 that is epistatic over CsGL1. BMC Plant Biol 15:302

    Article  PubMed  PubMed Central  Google Scholar 

  • Parkin IA, Koh C, Tang H, Robinson SJ, Kagale S, Clarke WE, Town CD, Nixon J, Krishnakumar V, Bidwell SL, Denoeud F, Belcram H, Links MG, Just J, Clarke C, Bender T, Huebert T, Mason AS, Pires JC, Barker G, Moore J, Walley PG, Manoli S, Batley J, Edwards D, Nelson MN, Wang X, Paterson AH, King G, Bancroft I, Chalhoub B, Sharpe AG (2014) Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid Brassica oleracea. Genome Biol 15:R77

    Article  PubMed  PubMed Central  Google Scholar 

  • Pendleton M, Sebra R, Pang AW, Ummat A, Franzen O, Rausch T, Stutz AM, Stedman W, Anantharaman T, Hastie A, Dai H, Fritz MH, Cao H, Cohain A, Deikus G, Durrett RE, Blanchard SC, Altman R, Chin CS, Guo Y, Paxinos EE, Korbel JO, Darnell RB, McCombie WR, Kwok PY, Mason CE, Schadt EE, Bashir A (2015) Assembly and diploid architecture of an individual human genome via single-molecule technologies. Nat Methods 12:780–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piegu B, Guyot R, Picault N, Roulin A, Sanyal A, Kim H, Collura K, Brar DS, Jackson S, Wing RA, Panaud O (2006) Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res 16:1262–1269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhoads A, Au KF (2015) PacBio sequencing and its applications. Genomics Proteomics Bioinf 13:278–289

    Article  Google Scholar 

  • Robinson JT, Turner D, Durand NC, Thorvaldsdottir H, Mesirov JP, Aiden EL (2018) Juicebox.js provides a cloud-based visualization system for Hi-C data. Cell systems 6:256–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Servant N, Varoquaux N, Lajoie BR, Viara E, Chen CJ, Vert JP, Heard E, Dekker J, Barillot E (2015) HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol 16:259

    Article  PubMed  PubMed Central  Google Scholar 

  • Springer NM, Ying K, Fu Y, Ji T, Yeh CT, Jia Y, Wu W, Richmond T, Kitzman J, Rosenbaum H, Iniguez AL, Barbazuk WB, Jeddeloh JA, Nettleton D, Schnable PS (2009) Maize inbreds exhibit high levels of copy number variation (CNV) and presence/absence variation (PAV) in genome content. PLoS Genet 5:e1000734

    Article  PubMed  PubMed Central  Google Scholar 

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stein JC, Yu Y, Copetti D, Zwickl DJ, Zhang L, Zhang C, Chougule K, Gao D, Iwata A, Goicoechea JL, Wei S, Wang J, Liao Y, Wang M, Jacquemin J, Becker C, Kudrna D, Zhang J, Londono CEM, Song X, Lee S, Sanchez P, Zuccolo A, Ammiraju JSS, Talag J, Danowitz A, Rivera LF, Gschwend AR, Noutsos C, Wu CC, Kao SM, Zeng JW, Wei FJ, Zhao Q, Feng Q, El Baidouri M, Carpentier MC, Lasserre E, Cooke R, Rosa Farias DD, da Maia LC, Dos Santos RS, Nyberg KG, McNally KL, Mauleon R, Alexandrov N, Schmutz J, Flowers D, Fan C, Weigel D, Jena KK, Wicker T, Chen M, Han B, Henry R, Hsing YC, Kurata N, de Oliveira AC, Panaud O, Jackson SA, Machado CA, Sanderson MJ, Long M, Ware D, Wing RA (2018) Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza. Nat Genet 50:285–296

    Article  CAS  PubMed  Google Scholar 

  • Sun S, Zhou Y, Chen J, Shi J, Zhao H, Zhao H, Song W, Zhang M, Cui Y, Dong X, Liu H, Ma X, Jiao Y, Wang B, Wei X, Stein JC, Glaubitz JC, Lu F, Yu G, Liang C, Fengler K, Li B, Rafalski A, Schnable PS, Ware DH, Buckler ES, Lai J (2018) Extensive intraspecific gene order and gene structural variations between Mo17 and other maize genomes. Nat Genet 50:1289–1295

    Article  CAS  PubMed  Google Scholar 

  • Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56:564–577

    Article  CAS  PubMed  Google Scholar 

  • Tarailo-Graovac M, Chen N (2009) Using RepeatMasker to identify repetitive elements in genomic sequences. Current protocols in bioinformatics Chapter 4:Unit 4 10

  • Vitte C, Panaud O, Quesneville H (2007) LTR retrotransposons in rice (Oryza sativa, L.): recent burst amplifications followed by rapid DNA loss. BMC genomics 8:218

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang W, Guan R, Liu X, Zhang H, Song B, Xu Q, Fan G, Chen W, Wu X, Liu X, Wang J (2019) Chromosome level comparative analysis of Brassica genomes. Plant Mol Biol 99:237–249

    Article  CAS  PubMed  Google Scholar 

  • Waterhouse RM, Seppey M, Simao FA, Manni M, Ioannidis P, Klioutchnikov G, Kriventseva EV, Zdobnov EM (2018) BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol Biol Evol 35:543–548

    Article  CAS  PubMed  Google Scholar 

  • Wicker T, Gundlach H, Spannagl M, Uauy C, Borrill P, Ramirez-Gonzalez RH, De Oliveira R, International Wheat Genome Sequencing C, Mayer KFX, Paux E, Choulet F (2018) Impact of transposable elements on genome structure and evolution in bread wheat. Genome Biol 19:103

    Article  Google Scholar 

  • Xu Z, Wang H (2007) LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res 35:W265–268

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang J, Liu D, Wang X, Ji C, Cheng F, Liu B, Hu Z, Chen S, Pental D, Ju Y, Yao P, Li X, Xie K, Zhang J, Wang J, Liu F, Ma W, Shopan J, Zheng H, Mackenzie SA, Zhang M (2016) The genome sequence of allopolyploid Brassica juncea and analysis of differential homoeolog gene expression influencing selection. Nat Genet 48:1225–1232

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Cai X, Wu J, Liu M, Grob S, Cheng F, Liang J, Cai C, Liu Z, Liu B, Wang F, Li S, Liu F, Li X, Cheng L, Yang W, Li MH, Grossniklaus U, Zheng H, Wang X (2018) Improved Brassica rapa reference genome by single-molecule sequencing and chromosome conformation capture technologies. Hortic Res 5:50

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang QJ, Gao LZ (2017) Rapid and recent evolution of LTR Retrotransposons drives rice genome evolution during the speciation of AA-Genome Oryza species. G3: Genes Genomes Genet 7(6):1875–1885. https://doi.org/10.1534/g3.116.037572

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Meng L, Liu B, Hu Y, Cheng F, Liang J, Aarts MG, Wang X, Wu J (2015) A transposon insertion in FLOWERING LOCUS T is associated with delayed flowering in Brassica rapa. Plant Sci Int J Exp Plant Biol 241:211–220

    CAS  Google Scholar 

  • Zhang X, Zhang S, Zhao Q, Ming R, Tang H (2019) Assembly of allele-aware, chromosomal-scale autopolyploid genomes based on Hi-C data. Nat plants 5:833–845

    Article  CAS  PubMed  Google Scholar 

  • Zhou M, Hu B, Zhu Y (2017) Genome-wide characterization and evolution analysis of long terminal repeat retroelements in moso bamboo (Phyllostachys edulis). Tree Genet Genomes 13:1–12

    Article  CAS  Google Scholar 

  • Zimin AV, Puiu D, Luo MC, Zhu T, Koren S, Marcais G, Yorke JA, Dvorak J, Salzberg SL (2017) Hybrid assembly of the large and highly repetitive genome of Aegilops tauschii, a progenitor of bread wheat, with the MaSuRCA mega-reads algorithm. Genome Res 27:787–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Ian Bancroft and Zhesi He for the help of the evaluation of JZS v2 assembly.

Funding

This work is supported by the National Program on Key Research Project (2016YFD0100307), the National Natural Science Foundation of China (NSFC grants 31630068), Central Public-interest Scientific Institution Basal Research Fund (No.Y2017PT52), China Agriculture Research System, the Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences, the Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, P.R. China.

Author information

Authors and Affiliations

Authors

Contributions

XC wrote the manuscript. XW, JW and FC designed the experiments. XC performed the experiments. XW, JW, FC, JL, RL and KZ helped to improve the manuscript. All authors agree with the current statement.

Corresponding author

Correspondence to Xiaowu Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Communicated by Isobel A. P. Parkin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, X., Wu, J., Liang, J. et al. Improved Brassica oleracea JZS assembly reveals significant changing of LTR-RT dynamics in different morphotypes. Theor Appl Genet 133, 3187–3199 (2020). https://doi.org/10.1007/s00122-020-03664-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-020-03664-3

Navigation