Skip to main content
Log in

Whole genome sequencing of a MAGIC population identified genomic loci and candidate genes for major fiber quality traits in upland cotton (Gossypium hirsutum L.)

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Significant associations between candidate genes and six major cotton fiber quality traits were identified in a MAGIC population using GWAS and whole genome sequencing.

Abstract

Upland cotton (Gossypium hirsutum L.) is the world’s major renewable source of fibers for textiles. To identify causative genetic variants that influence the major agronomic measures of cotton fiber quality, which are used to set discount or premium prices on each bale of cotton in the USA, we measured six fiber phenotypes from twelve environments, across three locations and 7 years. Our 550 recombinant inbred lines were derived from a multi-parent advanced generation intercross population and were whole-genome-sequenced at 3× coverage, along with the eleven parental cultivars at 20× coverage. The segregation of 473,517 single nucleotide polymorphisms (SNPs) in this population, including 7506 non-synonymous mutations, was combined with phenotypic data to identify seven highly significant fiber quality loci. At these loci, we found fourteen genes with non-synonymous SNPs. Among these loci, some had simple additive effects, while others were only important in a subset of the population. We observed additive effects for elongation and micronaire, when the three most significant loci for each trait were examined. In an informative subset where the major multi-trait locus on chromosome A07:72-Mb was fixed, we unmasked the identity of another significant fiber strength locus in gene Gh_D13G1792 on chromosome D13. The micronaire phenotype only revealed one highly significant genetic locus at one environmental location, demonstrating a significant genetic by environment component. These loci and candidate causative variant alleles will be useful to cotton breeders for marker-assisted selection with minimal linkage drag and potential biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bates D, Mächler M, Bolker B, Walker S (2014) Fitting linear mixed-effects models using lme4. ArXiv preprint arXiv:1406.5823

  • Bouwman AC, Daetwyler HD, Chamberlain AJ, Ponce CH, Sargolzaei M, Schenkel FS et al (2018) Meta-analysis of genome-wide association studies for cattle stature identifies common genes that regulate body size in mammals. Nat Genet 50:362–367

    Article  CAS  PubMed  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Bradow JM, Davidonis GH (2000) Quantitation of fiber quality and the cotton production-processing interface: a physiologist’s perspective. J Cotton Sci 4:34–64

    Google Scholar 

  • Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C et al (2009) The genetic architecture of maize flowering time. Science 325:714–718

    Article  CAS  PubMed  Google Scholar 

  • Cao J, Schneeberger K, Ossowski S, Günther T, Bender S, Fitz J et al (2011) Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nat Genet 43:956–963

    Article  CAS  PubMed  Google Scholar 

  • Dabbert TA, Pauli D, Sheetz R, Gore MA (2017) Influences of the combination of high temperature and water deficit on the heritabilities and correlations of agronomic and fiber quality traits in upland cotton. Euphytica 213:6

    Article  Google Scholar 

  • Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA et al (2011) The variant call format and VCFtools. Bioinformatics 27:2156–2158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dell’Acqua M, Gatti DM, Pea G, Cattonaro F, Coppens F, Magris G et al (2015) Genetic properties of the MAGIC maize population: a new platform for high definition QTL mapping in Zea mays. Genome Biol 16:167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang DD, Hinze LL, Percy RG, Li P, Deng D, Thyssen G (2013) A microsatellite-based genome-wide analysis of genetic diversity and linkage disequilibrium in Upland cotton (Gossypium hirsutum L.) cultivars from major cotton-growing countries. Euphytica 191:391–401

    Article  CAS  Google Scholar 

  • Fang DD, Jenkins JN, Deng DD, McCarty JC, Li P, Wu J (2014) Quantitative trait loci analysis of fiber quality traits using a random-mated recombinant inbred population in Upland cotton (Gossypium hirsutum L.). BMC Genom 15:397

    Article  Google Scholar 

  • Fang L, Wang Q, Hu Y, Jia Y, Chen J, Liu B, Zhang Z, Guan X, Chen S, Zhou B et al (2017) Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits. Nat Genet 49:1089–1098

    Article  CAS  PubMed  Google Scholar 

  • Gore MA, Fang DD, Poland JA, Zhang J, Percy RG, Cantrell RG et al (2014) Linkage map construction and quantitative trait locus analysis of agronomic and fiber quality traits in cotton. Plant Genome. https://doi.org/10.3835/plantgenome2013.07.0023

    Article  Google Scholar 

  • Hequet EF, Wyatt B, Abidi N, Thibodeaux DP (2006) Creation of a set of reference material for cotton fiber maturity measurements. Text Res J 76:576–586

    Article  CAS  Google Scholar 

  • Huang X, Han B (2014) Natural variations and genome-wide association studies in crop plants. Ann Rev Plant Biol 65:531–551

    Article  CAS  Google Scholar 

  • Huang X, Paulo M-J, Boer M, Effgen S, Keizer P, Koornneef M, van Eeuwijk FA (2011) Analysis of natural allelic variation in Arabidopsis using a multiparent recombinant inbred line population. PNAS 108:4488–4493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang BE, Verbyla KL, Verbyla AP, Raghavan C, Singh VK, Gaur P et al (2015) MAGIC populations in crops: current status and future prospects. Theor Appl Genet 128:999–1017

    Article  PubMed  Google Scholar 

  • Huang C, Nie X, Shen C, You C, Li W, Zhao W, Zhang X, Lin Z (2017) Population structure and genetic basis of the agronomic traits of upland cotton in China revealed by a genome-wide association study using high-density SNPs. Plant Biotechnol J 15:1374–1386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hulse-Kemp AM, Lemm J, Plieske J, Ashrafi H, Buyyarapu R, Fang DD et al (2015) Development of a 63 K SNP array for cotton and high-density mapping of intra-and inter-specific populations of Gossypium spp. G3: Genes Genomes Genet. https://doi.org/10.1534/g3.115.018416

    Article  Google Scholar 

  • Islam MS, Zeng L, Delhom CD, Song X, Kim HJ, Li P, Fang DD (2014) Identification of cotton fiber quality quantitative trait loci using intraspecific crosses derived from two near-isogenic lines differing in fiber bundle strength. Mol Breed 34:373–384

    Article  CAS  Google Scholar 

  • Islam MS, Thyssen GN, Jenkins JN, Zeng L, Delhom CD, McCarty JC et al (2016) A MAGIC population-based genome-wide association study reveals functional association of GhRBB1_A07 gene with superior fiber quality in cotton. BMC Genom 17:903

    Article  CAS  Google Scholar 

  • Jenkins J, McCarty J, Gutierrez O, Hayes R, Bowman D, Watson C, Jones D (2008) Registration of RMUP-C5, a random mated population of upland cotton germplasm. J Plant Regist 2:239–242

    Article  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Fu Y, Sun R, Wang Y, Wang Q (2018) Single-locus and multi-locus genome-wide association studies in the genetic dissection of fiber quality traits in Upland cotton (Gossypium hirsutum L.). Front Plant Sci 9:1083

    Article  PubMed  PubMed Central  Google Scholar 

  • Lipka AE, Tian F, Wang Q, Peiffer J, Li M, Bradbury PJ et al (2012) GAPIT: genome association and prediction integrated tool. Bioinformatics 28:2397–2399

    Article  CAS  PubMed  Google Scholar 

  • Ma Z, He S, Wang X, Sun J, Zhang Y, Zhang G et al (2018) Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield. Nat Genet 50:803–813

    Article  CAS  PubMed  Google Scholar 

  • MacArthur J, Bowler E, Cerezo M, Gil L, Hall P, Hastings E et al (2016) The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res 45:D896–D901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, Ioannidis JP, Hirschhorn JN (2008) Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet 9:356–369

    Article  CAS  PubMed  Google Scholar 

  • Paterson A, Saranga Y, Menz M, Jiang C-X, Wright R (2003) QTL analysis of genotype × environment interactions affecting cotton fiber quality. Theor Appl Genet 106:384–396

    Article  CAS  PubMed  Google Scholar 

  • Paterson AH, Wendel JF, Gundlach H, Guo H, Jenkins J, Jin D et al (2012) Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492:423–427

    Article  CAS  PubMed  Google Scholar 

  • Paudel DR, Hequet EF, Abidi N (2013) Evaluation of cotton fiber maturity measurements. Ind Crops Prod 45:435–441

    Article  CAS  Google Scholar 

  • Percy RG, Cantrell RG, Zhang J (2006) Genetic variation for agronomic and fiber properties in an introgressed recombinant inbred population of cotton. Crop Sci 46:1311–1317

    Article  Google Scholar 

  • Rakshit S, Rakshit A, Patil J (2012) Multiparent intercross populations in analysis of quantitative traits. J Genet 91:111–117

    Article  PubMed  Google Scholar 

  • Rodgers J, Delhom C, Fortier C, Thibodeaux D (2011) Rapid measurement of cotton fiber maturity and fineness by image analysis microscopy using the Cottonscope®. Text Res J 82:259–271

    Article  CAS  Google Scholar 

  • Said JI, Knapka JA, Song M, Zhang J (2015) Cotton QTLdb: a cotton QTL database for QTL analysis, visualization, and comparison between Gossypium hirsutum and G. hirsutum × G. barbadense populations. Mol Genet Genom 290:1615–1625

    Article  CAS  Google Scholar 

  • Servin B, Martin OC, Mézard M (2004) Toward a theory of marker-assisted gene pyramiding. Genetics 168:513–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su J, Fan S, Li L, Wei H, Wang C, Wang H, Song M, Zhang C, Gu L, Zhao S (2016) Detection of favorable QTL alleles and candidate genes for lint percentage by GWAS in Chinese upland cotton. Front Plant Sci 7:1576

    PubMed  PubMed Central  Google Scholar 

  • Su J, Li L, Zhang C, Wang C, Gu L, Wang H, Wei H, Liu Q, Huang L, Yu S (2018) Genome-wide association study identified genetic variations and candidate genes for plant architecture component traits in Chinese upland cotton. Theor Appl Genet 131:1299–1314

    Article  CAS  PubMed  Google Scholar 

  • Sun Z, Wang X, Liu Z, Gu Q, Zhang Y, Li Z et al (2017) Genome-wide association study discovered genetic variation and candidate genes of fibre quality traits in Gossypium hirsutum L. Plant Biotechnol J 15:982–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • The 1000 Genomes Project Consortium (2010) A map of human genome variation from population-scale sequencing. Nature 467:1061–1073

    Article  CAS  PubMed Central  Google Scholar 

  • Thyssen GN, Fang DD, Turley RB, Florane C, Li P, Naoumkina M (2014) Next generation genetic mapping of the Ligon-lintless-2 (Li2) locus in upland cotton (Gossypium hirsutum L.). Theor Appl Genet 127:2183–2192

    Article  CAS  PubMed  Google Scholar 

  • Verhalen LM, Mamaghani R, Morrison WC, McNew RW (1975) Effect of blooming date on boll retention and fiber properties in cotton 1. Crop Sci 15:47–52

    Article  Google Scholar 

  • Wakelyn PJ, Chaudhry MR (2010) Cotton: technology for the 21st century. In: International cotton advisory committee, Washington, DC

  • Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H et al (2013) The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res 42:D1001–D1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu TD, Nacu S (2010) Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics 26:873–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • You Q, Xu W, Zhang K, Zhang L, Yi X, Yao D, Wang C, Zhang X, Zhao X, Provart NJ (2016) ccNET: Database of co-expression networks with functional modules for diploid and polyploid Gossypium. Nucleic Acids Res 45:D1090–D1099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Holland JB, McMullen MD, Buckler ES (2008) Genetic design and statistical power of nested association mapping in maize. Genetics 178:539–551

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuan Y, Wang X, Wang L, Xing H, Wang Q, Saeed M, Tao J, Feng W, Zhang G, Song X-L (2018) Genome-wide association study identifies candidate genes related to seed oil composition and protein content in Gossypium hirsutum L. Front Plant Sci 9:1359

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Ersoz E, Lai C-Q, Todhunter RJ, Tiwari HK, Gore MA et al (2010) Mixed linear model approach adapted for genome-wide association studies. Nat Genet 42:355–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang T, Hu Y, Jiang W, Fang L, Guan X, Chen J et al (2015) Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol 33:531–537

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded mainly by the USDA Agricultural Research Service CRIS Projects 6054-21000-017-00D (GNT, DDF), 6064-21000-016-00D (JNJ, JCM), 6066-21000-051-00D (LZ), and 6082-21000-008-00D (BTC). Additional funding was provided by Cotton Incorporated Projects 10-747 and 15-751 awarded to DDF, and Project 09-541 to JNJ. Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the USDA which is an equal opportunity provider and employer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David D. Fang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Availability of data and materials

All relevant data reported in this paper are within the paper and its online supplementary files.

Additional information

Communicated by Yunbi Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1.

VanRaden kinship matrix of 550 RILs in the MAGIC population. Color key and histogram of values is shown at top left (TIFF 1817 kb)

Fig. S2.

GWAS Manhattan plots for each of six traits at each of twelve location-years. Chromosomes are labeled 1–13 for Chr. A01–A13, and 14–26 for D01–D13. Location and trait abbreviations: Stoneville, MS, USA (STV), Starkville, MS, USA (MSU), Florence, SC, USA (FLO), elongation (ELO), micronaire (MIC), short fiber index (SFI), fiber strength (STR), upper half mean length (UHML), and uniformity index (UI) (PDF 14026 kb)

Fig. S3.

Violin plot of MIC values for RILs based on genotypes at the three loci discussed in the text. Genotypes are presented along the horizontal axis, with the high-MIC haplotype indicated with a dark gray rectangle and the low-MIC haplotypes with a light gray rectangle. The number (N) of RILs in each group is indicated. See also Fig. 6. For pairwise t test p values see Table S10 (TIFF 197 kb)

Supplementary material 4 (XLSX 3229 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thyssen, G.N., Jenkins, J.N., McCarty, J.C. et al. Whole genome sequencing of a MAGIC population identified genomic loci and candidate genes for major fiber quality traits in upland cotton (Gossypium hirsutum L.). Theor Appl Genet 132, 989–999 (2019). https://doi.org/10.1007/s00122-018-3254-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-018-3254-8

Navigation