Skip to main content
Log in

Association mapping utilizing diverse barley lines reveals net form net blotch seedling resistance/susceptibility loci

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

A diverse collection of barley lines was phenotyped with three North American Pyrenophora teres f. teres isolates and association analyses detected 78 significant marker-trait associations at 16 genomic loci.

Abstract

Pyrenophora teres f. teres is a necrotrophic fungal pathogen and the causal agent of the economically important foliar disease net form net blotch (NFNB) of barley. The deployment of effective and durable resistance against P. teres f. teres has been hindered by the complexity of quantitative resistance and susceptibility. Several bi-parental mapping populations have been used to identify QTL associated with NFNB disease on all seven barley chromosomes. Here, we report the first genome-wide association study (GWAS) to detect marker-trait associations for resistance or susceptibility to P. teres f. teres. Geographically diverse barley genotypes from a world barley core collection (957) were genotyped with the Illumina barley iSelect chip and phenotyped with three P. teres f. teres isolates collected in two geographical regions of the USA (15A, 6A and LDNH04Ptt19). The best of nine regression models tested were identified for each isolate and used for association analysis resulting in the identification of 78 significant marker-trait associations (MTA; −log10p value >3.0). The MTA identified corresponded to 16 unique genomic loci as determined by analysis of local linkage disequilibrium between markers that did not meet a correlation threshold of R 2 ≥ 0.1, indicating that the markers represented distinct loci. Five loci identified represent novel QTL and were designated QRptts-3HL, QRptts-4HS, QRptts-5HL.1, QRptts-5HL.2, and QRptts-7HL.1. In addition, 55 of the barley lines examined exhibited a high level of resistance to all three isolates and the SNP markers identified will provide useful genetic resources for barley breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abu Qamar M, Liu ZH, Faris JD, Chao S, Edwards MC, Lai Z, Frankowiak JD, Friesen TL (2008) A region of barley chromosome 6H harbors multiple major genes associated with the net type net blotch resistance. Theor Appl Genet 117:1261–1270

    Article  CAS  PubMed  Google Scholar 

  • Akhavan A, Turkington TK, Askarian H, Tekauz A, Xi K, Tucker JR, Kutcher HR, Strelkov SE (2016) Virulence of Pyrenophora teres populations in western Canada. Can J Plant Pathol. doi:10.1080/07060661.2016.1159617

    Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Cakir M, Gupta S, Platz GJ, Ablett GA, Loughman R, Embiri LC, Poulsen D, Li C, Lance RCM, Galway NW, Jones MGK, Appels R (2003) Mapping and validation of the genes for resistance to Pyrenophora teres f teres in barley (Hordeum vulgare L.). Aust J Agric Res 54:1369–1377

    Article  CAS  Google Scholar 

  • Earl DA, von Holdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4(2):359–361

    Article  Google Scholar 

  • Emebiri LC, Platz G, Moody DB (2005) Disease resistance genes in a doubled haploid population of two-rowed barley segregating for malting quality attributes. Aust J Agric Res 56(1):49–56

    Article  CAS  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Friesen TL, Faris JD, Lai Z, Steffenson BJ (2006) Identification and chromosomal location of major genes for resistance to Pyrenophora teres in a barley doubled haploid population. Genome 409:855–859

    Article  Google Scholar 

  • Graner A, Foroughi-Wehr B, Tekauz A (1996) RFLP mapping of a gene in barley conferring resistance to net blotch (Pyrenophora teres). Euphytica 91:229–234

    CAS  Google Scholar 

  • Grewal TS, Rossnagel BG, Pozniak CJ, Scoles GJ (2008) Mapping quantitative trait loci associated with barley net blotch resistance. Theor Appl Genet 116:529–539

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z, Li M, Fan D, Guo Y, Wang A, Wang L, Deng L, Li W, Lu Y, Weng Q, Liu K, Huang T, Zhou T, Jing Y, Li W, Lin Z, Buckler ES, Qian Q, Zhang QF, Li J, Han B (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nature Genet 42(11):961–967

    Article  CAS  PubMed  Google Scholar 

  • International Barley Genome Sequencing Consortium (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491(7426):711–716

    Google Scholar 

  • Jonsson R, Sail T, Bryngelsson T (2000) Genetic diversity for random amplified polymorphic DNA (RAPD) markers in two Swedish populations of Pyrenophora teres. Can J Plant Pathol 22(3):258–264

    Article  CAS  Google Scholar 

  • König J, Perovic D, Kopahnke D, Ordon F, Léon J (2014) Mapping seedling resistance to net form of net blotch (f.) in barley using detached leaf assay. Plant Breeding 133(3):356–365

    Article  Google Scholar 

  • Kump KL, Bradbury PJ, Wisser R, Buckler ES, Belcher AR, Oropeza-Rosas MA, Zwonitzer JC, Kresovich S, McMullen MD, Ware D, Balint-Kurti PJ, Holland JB (2011) Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nat Genet 43:163–168

    Article  CAS  PubMed  Google Scholar 

  • Li M, Liu X, Bradbury P, Yu J, Zhang Y, Todhunter RJ Buckler ES, Zhang Z (2014) Enrichment of statistical power for genome-wide association studies. BMC Biol 12:73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipka AE, Tian F, Wang Q, Peiffer J, Li M, Bradbury PJ, Gore MA, Buckler ES, Zhang Z (2012) GAPIT: genome association and prediction integrated tool. Bioinformatics 28(18):2397–2399

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Ellwood SR, Oliver RP, Friesen TL (2011) Pyrenophora teres: profile of an increasingly damaging barley pathogen. Mol Plant Pathol 12(1):1–19

    Article  PubMed  Google Scholar 

  • Liu ZH, Zhong S, Stasko AK, Edwards MC, Friesen TL (2012) Virulence profile and genetic structure of a North Dakota population of Pyrenophora teres f teres, the causal agent of net form net blotch of barley. Phytopathology 102(5):539–546

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Holmes DJ, Faris JD, Chao S, Brueggeman RS, Edwards MC, Friesen TL (2015) Necrotrophic effector-triggered susceptibility (NETS) underlies the barley-f. interaction specific to chromosome 6H. Mol Plant Pathol 16(2):188–200

    Article  CAS  PubMed  Google Scholar 

  • Loiselle BA, Sork VL, Nason J, Graham C (1995) Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am J Bot 82:1420–1425

    Article  Google Scholar 

  • Ma ZQ, Lalpitan NLV, Steffenson B (2004) QTL mapping of net blotch resistance genes in a doubled-haploid population of six-rowed barley. Euphytica 137:291–296

    Article  CAS  Google Scholar 

  • Mamidi S, Chikara S, Goos JR, Hyten DL, Annam D, Mafi Moghaddam S, Lee RK, Cregan PC, McClean PE (2011) Genome-wide association analysis identifies candidate genes associated with iron deficiency chlorosis in soybean. Plant Genome 4:154–164

    Article  CAS  Google Scholar 

  • Manninen O, Kalendar R, Robinson J, Schulman AH (2000) Application of BARE-1 retrotransposon markers to the mapping of a major resistance gene for net blotch in barley. Mol Genet Genom 264:325–334

    Article  CAS  Google Scholar 

  • Manninen OM, Jalli M, Kalendar R, Schulman A, Afanasenko O, Robinson J (2006) Mapping of major spot-type and net-type net-blotch resistance genes in the Ethiopian barley line CI 9819. Genome 49:1564–1571

    Article  CAS  PubMed  Google Scholar 

  • Mascher M, Muehlbauer GJ, Rokhsar DS, Chapman J, Schmutz J, Barry K, Muñoz - Amatriaín M, Close TJ, Wise RP, Schulman AH, Himmelbach A, Mayer KF, Scholz U, Poland JA, Stein N, Waugh R (2013) Anchoring and ordering NGS contig assemblies by population sequencing (POPSEQ). Plant J 76(4):718–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Massman J, Cooper B, Horsley R, Neate S, Dill-Macky R, Chao S, Dong Y, Schwarz P, Muehlbauer GJ, Smith KP (2011) Genome-wide association mapping of Fusarium head blight resistance in contemporary barley breeding germplasm. Mol Breed 27:439–454

    Article  Google Scholar 

  • Mathre DE (1997) Compendium of barley diseases, 2nd edn. The American Phytopathological Society, St. Paul

  • McLean MS, Howlett BJ, Hollaway GJ (2009) Epidemiology and control of spot form of net blotch (Pyrenophora teres f maculata) of barley: a review. Crop Pasture Sci 60:303–315

    Article  CAS  Google Scholar 

  • Muñoz-Amatriaín M, Cuesta-Marcos A, Endelman JB, Comadran J, Bonman JM, Bockelman HE, Chao S, Russell J, Waugh R, Hayes PM, Muehlbauer GJ (2014) The USDA barley core collection: genetic diversity, population structure, and potential for genome-wide association studies. PLoS One 94:e94688

    Article  Google Scholar 

  • Murray GM, Brennan JP (2010) Estimating disease losses to the Australian barley industry. Australas Plant Pathol 39(1):85

    Article  Google Scholar 

  • Neupane A, Tamang P, Brueggeman RS, Friesen TL (2015) Evaluation of a barley core collection for spot form net blotch reaction reveals distinct genotype-specific pathogen virulence and host susceptibility. Phytopathology 105(4):509–517

    Article  CAS  PubMed  Google Scholar 

  • Peever TL, Milgroom MG (1994) Genetic structure of Pyrenophora teres populations determined with random amplified polymorphic DNA markers. Can J Bot 72:915–923

    Article  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rafalski JA (2010) Association genetics in crop improvement. Curr Opin Plant Biol 13:174–180

    Article  CAS  PubMed  Google Scholar 

  • Raman H, Platz GJ, Chalmers KJ, Raman R, Read BJ, Barr AR, Moody DB (2003) Mapping of genetic regions associated with net form of net blotch resistance in barley. Aust J Agric Res 54:1359–1367

    Article  CAS  Google Scholar 

  • Rau D, Maier FJ, Papa R, Brown AHD, Balmas V, Saba E, Schaefer W, Attene G (2005) Isolation and characterization of the mating-type locus of the barley pathogen Pyrenophora teres and frequencies of mating-type idiomorphs within and among fungal populations collected from barley landraces. Genome 48(5):855–869

    Article  CAS  PubMed  Google Scholar 

  • Rau D, Attene G, Brown AHD, Nanni L, Maier FJ, Balmas V, Saba E, Schafer W, Papa R (2007) Phylogeny and evolution of mating-type genes from Pyrenophora teres, the causal agent of barley “net blotch” disease. Curr Genet 51:377–392

    Article  CAS  PubMed  Google Scholar 

  • Richards J, Chao S, Friesen T, Brueggeman R (2016) Fine mapping of the barley chromosome 6H net form net blotch susceptibility locus. G3 6(7):1809–1818

    Article  PubMed  PubMed Central  Google Scholar 

  • Richter K, Schondelmaier J, Jung C (1998) Mapping of quantitative trait loci affecting Drechslera teres resistance in barley with molecular markers. Theor Appl Genet 97(8):1225–1234

    Article  CAS  Google Scholar 

  • Scheet P, Stephens M (2006) A fast and flexible statistical model for large-scale population genotype data: applications to inferring missing genotypes and haplotypic phase. Am J Hum Genet 78(4):629–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shjerve RA, Faris JD, Brueggeman RS, Yan C, Zhu Y, Koladia V, Friesen TL (2014) Evaluation of a Pyrenophora teres f. teres mapping population reveals multiple independent interactions with a region of barley chromosome 6H. Fungal Genet Biol 70:104–112

    Article  CAS  PubMed  Google Scholar 

  • Smedegård-Petersen V (1971) Pyrenophora teres f maculata f nov and Pyrenophora teres f. teres on barley in Denmark. Royal Veterinary and Agricultural University, Copenhagen, pp 124–144

  • St Pierre S, Gustus C, Steffenson B, Dill-Macky R, Smith KP (2010) Mapping net form net blotch and Septoria speckled leaf blotch resistance loci in barley. Phytopathol 100(1):80–84

    Article  CAS  Google Scholar 

  • Steffenson BJ. Webster RK (1992) Quantitative resistance to Pyrenophora teres f. teres in barley. Phytopathol 82 (4):407–411

    Article  Google Scholar 

  • Steffenson BJ, Hayes HM, Kleinhofs A (1996) Genetics of seedling and adult plant resistance to net blotch (Pyrenophora teres f. teres) and spot blotch (Cochliobolus sativus) in barley. Theor Appl Genet 92:552–558

    Article  CAS  PubMed  Google Scholar 

  • Tamang P, Neupane A, Mamidi S, Friesen T, Brueggeman R (2015) Association mapping of seedling resistance to spot form net blotch in a worldwide collection of barley. Phytopathology 105(4):500–508

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, Liu X, Wang J, Li M, Wang Q, Tian F, Su Z, Pan Y, Lipka AE, Buckler ES, Zhang, Z (2016) GAPIT version 2: an enhanced integrated tool for genomic association and prediction plant genome. Plant Genome. doi:10.3835/plantgenome2015.11.0120

    Google Scholar 

  • Tekauz A (1985) A numerical scale to classify reactions of barley to Pyrenophora teres. Can J Plant Pathol 7(2):181–183

    Article  Google Scholar 

  • Tekauz A (1990) Characterization and distribution of pathogenic variation in Pyrenophora teres f. teres and P teres f. maculata from western Canada. Can J Plant Pathol 12(2):141–148

    Article  Google Scholar 

  • Tian F, Bradbury PJ, Brown PJ, Hung H, Sun Q, Fling-Garcia S, Rocheford TR, McMullen MD, Holland JB, Buckler ES (2011) Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet 43:159–162

    Article  CAS  PubMed  Google Scholar 

  • Turner SD (2014) qqman: an R package for visualizing GWAS results using Q-Q and manhattan plots. biorXiv. doi:10.1101/005165

  • Wu HL, Steffenson BJ, Zhong S, Li Y, Oleson AE (2003) Genetic variation for virulence and RFLP markers in Pyrenophora teres. Can J Plant Path 25(1):82–90

    Article  CAS  Google Scholar 

  • Yu J, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Article  CAS  PubMed  Google Scholar 

  • Yun SJ, Gyenis L, Hayes PM, Matus I, Smith KP, Steffenson BJ, Muehlbauer GJ (2005) Quantitative trait loci for multiple disease resistance in wild barley. Crop Sci 45(6):2563–2572

    Article  CAS  Google Scholar 

  • Zhang Z, Ersoz E, Lai C, Todhunter RJ, Tiwari HK, Gore MA, Bradbury PJ, Yu J, Arnett DK, Ordovas JM, Buckler ES (2010) Mixed linear model approach adapted for genome-wide association studies. Nat Genet 42:355–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao K, Aranzana MJ, Kim S, Lister C, Shindo C, Tang C, Toomajian C, Zheng H, Dean C, Marjoram P, Nordborg M (2007) An Arabidopsis example of association mapping in structured samples. PLOS Genet. doi:10.1371/journal.pgen.0030004

    Google Scholar 

  • Zhou H, Steffenson B (2013) Genome-wide association mapping reveals genetic architecture of durable spot blotch resistance in US barley breeding germplasm. Mol Breed 32:139–154

    Article  Google Scholar 

  • Zhou H, Steffenson BJ, Muehlbauer G, Wanyera R, Njau P, Ndeda S (2014) Association mapping of stem rust race TTKSK resistance in US barley breeding germplasm. Theor Appl Genet 127(6):1293–1304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu C, Gore M, Buckler ES, Yu J (2008) Status and prospects of association mapping in plants. Plant Genome 1(1):5–20

    Article  CAS  Google Scholar 

  • Ziems LA, Hickey LT, Hunt CH, Mace ES, Platz GJ, Franckowiak JD, Jordan DR (2014) Association mapping of resistance to Puccinia hordei in Australian barley breeding germplasm. Theor Appl Genet 127:1199–1212

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Danielle Holmes for technical assistance at the USDA-ARS, Cereal Crops Research Unit, Fargo ND. This research was funded by NSF ND EPSCoR Track 1 Grant 11A-1355466 and USDA-NIFA-AFRI Grant #2011-68002-30029 (T-CAP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert S. Brueggeman.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest for this article.

Ethical standards

All experiments performed complied with the ethical standards of the USDA-ARS and North Dakota State University.

Additional information

Communicated by Kevin Smith.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richards, J.K., Friesen, T.L. & Brueggeman, R.S. Association mapping utilizing diverse barley lines reveals net form net blotch seedling resistance/susceptibility loci. Theor Appl Genet 130, 915–927 (2017). https://doi.org/10.1007/s00122-017-2860-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-017-2860-1

Keywords

Navigation