Skip to main content
Log in

Development of genic cleavage markers in association with seed glucosinolate content in canola

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

The orthologues of Arabidopsis involved in seed glucosinolates metabolism within QTL confidence intervals were identified, and functional markers were developed to facilitate breeding for ultra-low glucosinolates in canola.

Abstract

Further reducing the content of seed glucosinolates will have a positive impact on the seed quality of canola (Brassica napus). In this study 43 quantitative trait loci (QTL) for seed glucosinolate (GSL) content in a low-GSL genetic background were mapped over seven environments in Germany and China in a doubled haploid population from a cross between two low-GSL oilseed rape parents with transgressive segregation. By anchoring these QTL to the reference genomes of B. rapa and B. oleracea, we identified 23 orthologues of Arabidopsis involved in GSL metabolism within the QTL confidence intervals. Sequence polymorphisms between the corresponding coding regions of the parental lines were used to develop cleaved amplified polymorphic site markers for two QTL-linked genes, ISOPROPYLMALATE DEHYDROGENASE1 and ADENOSINE 5′-PHOSPHOSULFATE REDUCTASE 3. The genic cleavage markers were mapped in the DH population into the corresponding intervals of QTL explaining 3.36–6.88 and 4.55–8.67 % of the phenotypic variation for seed GSL, respectively. The markers will facilitate breeding for ultra-low seed GSL content in canola.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bak S, Feyereisen R (2001) The involvement of two P450 enzymes, CYP83B1 and CYP83A1, in auxin homeostasis and glucosinolate biosynthesis. Plant Physiol 127:108–118

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Basunanda P, Spiller TH, Hasan M, Gehringer A, Schondelmaier J, Lühs W, Friedt W, Snowdon RJ (2007) Marker-assisted increase of genetic diversity in a double-low seed quality winter oilseed rape genetic background. Plant Breed 126:581–587

    Article  Google Scholar 

  • Binder S, Knill T, Schuster J (2007) Branched-chain amino acid metabolism in higher plants. Physiol Plant 129:68–78

    Article  CAS  Google Scholar 

  • Chalhoub B, Denoeud F, Liu S, Parkin IAP, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Corréa M, Da Silva C, Just J, Falentin C, Koh CS, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M, Edger PP, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier M-C, Fan G, Renault V, Bayer PE, Golicz AA, Manoli S, Lee T-H, Thi VHD, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom CHD, Wang X, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu Z, Sun F, Lim YP, Lyons E, Town CD, Bancroft I, Wang X, Meng J, Ma J, Pires JC, King GJ, Brunel D, Delourme R, Renard M, Aury J-M, Adams KL, Batley J, Snowdon RJ, Tost J, Edwards D, Zhou Y, Hua W, Sharpe AG, Paterson AH, Guan C, Wincker P (2014) Early allopolyploid evolution in the post-neolithic Brassica napus oilseed genome. Science 346:950–953

    Article  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dimov Z, Suprianto E, Hermann F, Möllers C (2012) Genetic variation for seed hull and fibre content in a collection of European winter oilseed rape material (Brassica napus L.) and development of NIRS calibrations. Plant Breed 131:361–368

    Article  Google Scholar 

  • Gao M, Li G, Potter D, McCombie WR, Quiros CF (2006) Comparative analysis of methylthio alkylmalate synthase (MAM) gene family and flanking DNA sequences in Brassica oleracea and Arabidopsis thaliana. Plant Cell Rep 25:592–598

    Article  CAS  PubMed  Google Scholar 

  • Gigolashvili T, Yatusevich R, Rollwitz I, Humphry M, Gershenzon J, Flügge UI (2009) The plastidic bile acid transporter 5 is required for the biosynthesis of methionine-derived glucosinolates in Arabidopsis thaliana. Plant Cell 21:1813–1829

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grubb CD, Abel S (2006) Glucosinolate metabolism and its control. Trends Plant Sci 11:89–100

    Article  CAS  PubMed  Google Scholar 

  • Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333

    Article  CAS  PubMed  Google Scholar 

  • Hallauer AR, Miranda J (1988) Quantitative genetics in maize breeding. Iowa State University, Ames

    Google Scholar 

  • Harper AL, Trick M, Higgins J, Fraser F, Clissold L, Wells R, Hattori C, Werner P, Bancroft I (2012) Associative transcriptomics of traits in the polyploid crop species B. napus. Nat Biotechnol 30:798–802

    Article  CAS  PubMed  Google Scholar 

  • Hasan M, Friedt W, Pons-Kühnemann J, Freitag NM, Link K, Snowdon RJ (2008) Association of gene-linked SSR markers to seed glucosinolate content in oilseed rape (Brassica napus ssp. napus). Theor Appl Genet 116:1035–1049

    Article  CAS  PubMed  Google Scholar 

  • He Y, Mawhinney TP, Preuss ML, Schroeder AC, Chen B, Abraham L, Jez JM, Chen S (2009) A redox-active isopropylmalate dehydrogenase functions in the biosynthesis of glucosinolates and leucine in Arabidopsis. Plant J 60:679–690

    Article  CAS  PubMed  Google Scholar 

  • Hirai MY, Sugiyama K, Sawada Y, Tohge T, Obayashi T, Suzuki A, Araki R, Sakurai N, Suzuki H, Aoki K, Goda H, Nishizawa OI, Shibata D, Saito K (2007) Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis. Proc Natl Acad Sci 104:6478–6483

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Howell PM, Sharpe AG, Lydiate DJ (2003) Homoeologous loci control the accumulation of seed glucosinolates in oilseed rape (B. napus). Genome 46:454–460

    Article  CAS  PubMed  Google Scholar 

  • Hutcheson DS, Falk KC, Rakow GFW (2000) TR4 summer turnip rape. Can J Plant Sci 80:837–838

    Article  Google Scholar 

  • Javidfar F, Cheng B (2013) Construction of a genetic linkage map and QTL analysis of erucic acid content and glucosinolate components in yellow mustard (Sinapis alba L.). BMC Plant Biol 13:142

    Article  PubMed Central  PubMed  Google Scholar 

  • Kondra ZP, Stefansson BR (1970) Inheritance of the major glucosinolates of rapeseed (Brassica napus) meal. Can J Plant Sci 50:643–647

    Article  CAS  Google Scholar 

  • Krzymanski J (1970) Inheritance of thioglucoside content by rapeseed (B. napus). J Int Sur le Colza Paris 37:213–218

    Google Scholar 

  • Leckband G, Frauen M, Friedt W (2002) NAPUS 2000. Rapeseed (B. napus) breeding for improved human nutrition. Food Res Int 35:273–278

    Article  CAS  Google Scholar 

  • Lee BR, Koprivova A, Kopriva S (2011) The key enzyme of sulfate assimilation, adenosine 5′-phosphosulfate reductase, is regulated by HY5 in Arabidopsis. Plant J 67:1042–1054

    Article  CAS  PubMed  Google Scholar 

  • Li PW, Zhao YG, Zhang W, Ding XX, Yang M, Wang XF, Xie CH, Fu TD (2005) Analysis of glucosinolate components and profiles in Brassica napus. Scientia Agricultura Sinica 38:1346–1352

    CAS  Google Scholar 

  • Li F, Chen B, Xu K, , Wu J, Song W, , Bancroft I, Harper AL, Trick M, , Liu S, , Gao G, Wang N, Yan G, , Li J, , Qiao J, , Xiao X, Zhang T, Wu X (2014) Genome-wide association study dissects the genetic architecture of seed weight and seed quality in rapeseed (Brassica napus L.). DNA Res 21:355–367

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu S, Liu Y, Yang X et al (2014) The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun 5:3930

    PubMed Central  CAS  PubMed  Google Scholar 

  • Long Y, Shi J, Qiu D, Li R, Zhang C, Wang J, Hou J, Zhao J, Shi L, Beom-Seok Park, Choi SR, Lim YP, Meng J (2007) Flowering time quantitative trait loci analysis of oilseed Brassica in multiple environments and genomewide alignment with Arabidopsis. Genetics 177:2433–2444

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lowe AJ, Moule C, Trick M, Edwards KJ (2004) Efficient large-scale development of microsatellites for marker and mapping applications in Brassica crop species. Theor Appl Genet 108:1103–1112

    Article  CAS  PubMed  Google Scholar 

  • Mahmood T, Ekuere U, Yeh F, Good AG, Stringam GR (2003) Molecular mapping of seed aliphatic glucosinolates in Brassica juncea. Genome 46:753–760

    Article  CAS  PubMed  Google Scholar 

  • Mikkelsen MD, Naur P, Halkier BA (2004) Arabidopsis mutants in the C-S lyase of glucosinolate biosynthesis establish a critical role for indole-3-acetaldoxime in auxin homeostasis. Plant J 37:770–777

    Article  CAS  PubMed  Google Scholar 

  • Parkin IAP, Gulden SM, Sharpe AG, Lukens L, Trick M, Osborn TC, Lydiate DJ (2005) Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics 171:765–781

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Piotrowski M, Schemenewitz A, Lopukhina A, Müller A, Janowitz T, Weiler EW, Oecking C (2004) Desulfoglucosinolate sulfotransferase from Arabidopsis thaliana catalyze the final step in the biosynthesis of the glucosinolate core structure. J Biol Chem 279:50717–50725

    Article  CAS  PubMed  Google Scholar 

  • Piquemal J, Cinquin E, Couton F, Rondeau C, Seignoret E, Doucet I, Perret D, Villeger MJ, Vincourt P, Blanchard P (2005) Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theor Appl Genet 111:1514–1523

    Article  CAS  PubMed  Google Scholar 

  • Qian L, Qian W, Snowdon RJ (2014) Sub-genomic selection patterns as a signature of breeding in the allopolyploid Brassica napus genome. BMC Genomics in press

  • Quijada PA, Udall JA, Lambert B, Osborn TC (2006) Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.):1. Identification of genomic regions from winter germplasm. Theor Appl Genet 113:549–561

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual (3-volume set). Cold Spring Harbor, USA

    Google Scholar 

  • SAS and Institute (2000) SAS/STAT user’s guide, version 8. SAS Institute, Cary

    Google Scholar 

  • Sharpe AG, Lydiate DJ (2003) Mapping the mosaic of ancestral genotypes in a cultivar of oilseed rape (Brassica napus) selected via pedigree breeding. Genome 46:461–468

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Li R, Qiu D, Jiang CC, Long Y, Morgan C, Bancroft I, Zhao J, Meng JL (2009) Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. Genetics 182:851–861

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: join Map. Plant J 3:739–744

    Article  CAS  Google Scholar 

  • Suwabe K, Iketani H, Nunome T, Kage T, Hirai M (2002) Isolation and characterization of microsatellites in Brassica rapa L. Theor Appl Genet 104:1092–1098

    Article  CAS  PubMed  Google Scholar 

  • Uzunova M, Ecke W, Weissleder K, Röbbelen G (1995) Mapping the genome of rapeseed (Brassica napus L.). I. Construction of an RFLP linkage map and localization of QTLs for seed glucosinolate content. Theor Appl Genet 90:194–204

    Article  CAS  PubMed  Google Scholar 

  • Walker KC, Booth EJ (2001) Agricultural aspects of rape and other Brassica products. Eur J Lipid Sci Technol 103:441–446

    Article  CAS  Google Scholar 

  • Wanasundara JPD (2011) Proteins of Brassicaceae oilseeds and their potential as a plant protein source. Crit Rev Food Sci Nutr 51:635–677

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Basten CJ, Basten CJ, Zeng ZB (2005) Windows QTL cartographer version 2.5. Statistical genetics. North Carolina State University, Raleigh

    Google Scholar 

  • Wang X, Wang H, Wang J et al (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1039

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Li F, Chen B, Xu K, Yan G, Qian J, Li J, Gao G, Bancroft I, Meng J, King GJ, Wu X (2014) Genome-wide investigation of genetic changes during modern breeding of Brassica napus. Theor Appl Genet 127:1817–1829

    Article  PubMed  Google Scholar 

  • Wittkop B, Snowdon RJ, Friedt W (2009) Status and perspectives of breeding for enhanced yield and quality of oilseed crops for Europe. Euphytica 170:131–140

    Article  Google Scholar 

  • Wittstock U, Halkier BA (2000) Cytochrome P450 CYP79A2 from Arabidopsis thaliana L. catalyzes the conversion of l-phenylalanine to phenylacetaldoxime in the biosynthesis of benzylglucosinolate. J Biol Chem 275:14659–14666

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Meng J (2003) Detection of loci controlling seed glucosinolate content and their association with Sclerotinia resistance in Brassica napus. Plant Breed 122:19–23

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Norddeutsche Pflanzenzucht Hans-Georg Lembke KG, Germany, for developing the DH population. This study was supported by grant 973 (2015CB150201), the Key Projects in the National Science and Technology (2014BAD01B07), the Fundamental Research Funds for the Central Universities (XDJK2013A013, XDJK2014C148, XDJK2014B036, XDJK2014A015, SWU113106, SWU113065) and NSFC (31171585, 31471529).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rod J. Snowdon or Wei Qian.

Additional information

Communicated by M. L. Federico.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 538 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Y., Lu, K., Qian, L. et al. Development of genic cleavage markers in association with seed glucosinolate content in canola. Theor Appl Genet 128, 1029–1037 (2015). https://doi.org/10.1007/s00122-015-2487-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-015-2487-z

Keywords

Navigation