Skip to main content
Log in

Molecular mapping of soybean rust resistance in soybean accession PI 561356 and SNP haplotype analysis of the Rpp1 region in diverse germplasm

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Soybean rust (SBR), caused by Phakopsora pachyrhizi Sydow, is one of the most economically important and destructive diseases of soybean [Glycine max (L.) Merr.] and the discovery of novel SBR resistance genes is needed because of virulence diversity in the pathogen. The objectives of this research were to map SBR resistance in plant introduction (PI) 561356 and to identify single nucleotide polymorphism (SNP) haplotypes within the region on soybean chromosome 18 where the SBR resistance gene Rpp1 maps. One-hundred F2:3 lines derived from a cross between PI 561356 and the susceptible experimental line LD02-4485 were genotyped with genetic markers and phenotyped for resistance to P. pachyrhizi isolate ZM01-1. The segregation ratio of reddish brown versus tan lesion type in the population supported that resistance was controlled by a single dominant gene. The gene was mapped to a 1-cM region on soybean chromosome 18 corresponding to the same interval as Rpp1. A haplotype analysis of diverse germplasm across a 213-kb interval that included Rpp1 revealed 21 distinct haplotypes of which 4 were present among 5 SBR resistance sources that have a resistance gene in the Rpp1 region. Four major North American soybean ancestors belong to the same SNP haplotype as PI 561356 and seven belong to the same haplotype as PI 594538A, the Rpp1-b source. There were no North American soybean ancestors belonging to the SNP haplotypes found in PI 200492, the source of Rpp1, or PI 587886 and PI 587880A, additional sources with SBR resistance mapping to the Rpp1 region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Born H, Diver S (2005) Asian soybean rust: notes and organic control options for farmers. http://www.agrisk.umn.edu/cache/ARL02950.htm

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    PubMed  CAS  Google Scholar 

  • Bromfield KR (1984) Soybean rust. Monograph no. 11. American Phytopathological Society, St. Paul

    Google Scholar 

  • Caldwell P, McLaren NW (2004) Soybean rust research in South Africa. In: Proc. VII world soybean res. conf. IV int. soybean processing and utilization conference, III Brazilian soybean congress, Foz do Iguassu, PR, Brazil, pp 354–360

  • Chakraborty N, Curley J, Frederick RD, Hyten DL, Nelson RL, Hartman GL, Diers BW (2009) Mapping and confirmation of a new allele at Rpp 1 from soybean PI 594538A conferring RB lesion-type resistance to soybean rust. Crop Sci 49:783–790

    Article  CAS  Google Scholar 

  • Fan JB, Chee MS, Gunderson KL (2006) Highly parallel genomic assays. Nat Rev Genet 7:632–644

    Article  PubMed  CAS  Google Scholar 

  • Fehr WR, Caviness CE, Burmood DT, Pennington JS (1971) Stage of development descriptions for soybeans, Glycine max (L.) Merrill. Crop Sci 11:929–931

    Article  Google Scholar 

  • Garcia A, Calvo ES, Kiihl RS, Harada A, Hiromoto DM, Vieira LGE (2008) Molecular mapping of soybean rust (Phakopsora pachyrhizi) resistance genes: discovery of a novel locus and alleles. Theor Appl Genet 117:545–553

    Article  PubMed  CAS  Google Scholar 

  • Gizlice Z, Carter TE, Burton JW (1994) Genetic base for North American public soybean cultivars released between 1947 and 1988. Crop Sci 34:1143–1151

    Article  Google Scholar 

  • Gore MA, Chia JM, Elshire RJ, Sun Q, Ersoz ES, Hurwitz BL, Peiffer JA, McMullen MD, Grills GS, Ross-Ibarra J, Ware DH, Buckler ES (2009) A first-generation haplotype map of maize. Science 326:1115–1117

    Article  PubMed  CAS  Google Scholar 

  • Hartman GL, Wang TC, Tschanz AT (1991) Soybean rust development and the quantitative relationship between rust severity and soybean yield. Plant Dis 75:596–600

    Article  Google Scholar 

  • Hartman GL, Miles MR, Frederick RD (2005) Breeding for resistance to soybean rust. Plant Dis 89:664–666

    Article  Google Scholar 

  • Hartman GL, Hill CB, Twizeyimana M, Miles MR, Bandyopadhyay R (2011) Interaction of soybean and Phakopsora pachyrhizi, the cause of soybean rust. CAB Rev Perspect Agric Vet Sci Nutr Nat Resour 6. doi:10.1079/PAVSNNR20116025

  • Hennings VP (1903) A few new Japanese Uredinaceae. Hedwigia 42:S107–S108

    Google Scholar 

  • Hershman D, Sikora E, Giesler L (2011) Soybean rust PIPE: Past, present, and future. J Integr Pest Manag 2. doi:10.1603/IPM11001

  • Hyten DL, Song Q, Zhu Y, Choi IY, Nelson RL, Costa JM, Specht JE, Shoemaker RC, Cregan PB (2006) Impacts of genetic bottlenecks on soybean genome diversity. Proc Natl Acad Sci USA 103:16666–16671

    Article  PubMed  CAS  Google Scholar 

  • Hyten DL, Hartman GL, Nelson RL, Frederick RD, Concibido VC, Narvel JM, Cregan PB (2007) Map location of the Rpp 1 locus that confers resistance to soybean rust in soybean. Crop Sci 47:837–840

    Article  CAS  Google Scholar 

  • Hyten DL, Smith JR, Frederick RD, Tuker ML, Song Q, Cregan PB (2009) Bulk segregate analysis using the GoldenGate assay to locate the Rpp 3 locus that confers resistance to Phakopsora pachyrhizi (soybean rust) in soybean. Crop Sci 49:265–271

    Article  CAS  Google Scholar 

  • Isard SA, Gage SH, Comtois P, Russo JM (2005) Principles of the atmospheric pathway for invasive species applied to soybean rust. Bioscience 55:851–862

    Article  Google Scholar 

  • Johnson GC, Esposito L, Barratt BJ, Smith AN, Heward J, Genova GD, Ueda H, Cordell HJ, Eaves IA, Dudbridge F, Twells RC, Payne F, Hughes W, Nutland S, Stevens H, Carr P, Tuomilehto-Wolf E, Tuomilehto J, Gough SC, Clayton DG, Todd JA (2001) Haplotype tagging for the identification of common disease genes. Nat Genet 29:233–237

    Article  PubMed  CAS  Google Scholar 

  • Keim P, Olson T, Shoemaker RC (1988) A rapid protocol for isolating soybean DNA. Soybean Genet Newsl 15:150–152

    Google Scholar 

  • Killgore E, Heu R (1994) First report of soybean rust in Hawaii. Plant Dis 78:1216

    Article  Google Scholar 

  • Lam HM, Xu X, Liu X, Chen W, Yang G, Wong FL, Li MW, He W, Qin N, Wang B, Li J, Jian M, Wang J, Shao G, Wang J, Sun SS, Zhang G (2010) Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet 42:1053–1059

    Article  PubMed  CAS  Google Scholar 

  • Li S, Smith JR, Ray JD, Frederick RD (2012) Identification of a new soybean rust resistance genes in PI 567102B. Theor Appl Genet 125:133–142

    Article  PubMed  CAS  Google Scholar 

  • Melching JS, Bromfield KR, Kingsolver CH (1983) The plant pathogen containment facility at Frederick, Maryland. Plant Dis 67:717–722

    Article  Google Scholar 

  • Meyer JDF, Silva DCG, Yang C, Pedley KF, Zhang C, van de Mortel M, Hill JH, Shoemaker RC, Abdelnoor RV, Whitham SA, Graham MA (2009) Identification and analyses of candidate genes for Rpp 4-mediated resistance to Asian soybean rust in soybean (Glycine max (L.) Merr.). Plant Physiol 150:295–307

    Article  PubMed  CAS  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    Article  PubMed  CAS  Google Scholar 

  • Miles MR, Frederick RD, Hartman GL (2003) Soybean rust: is the U.S. soybean crop at risk? APS Net Plant Pathol. doi:10.1094/APSnetFeature-2003-060

    Google Scholar 

  • Miles MR, Frederick RD, Hartman GL (2006) Evaluation of soybean germplasm for resistance to Phakopsora pachyrhizi. Plant Health Prog. doi:10.1094/PHP-2006-0104-01-RS

    Google Scholar 

  • Miles MR, Bonde MR, Nester SE, Berner DK, Frederick RD, Hartman GL (2011) Characterizing resistance to Phakopsora pachyrhizi in soybean. Plant Dis 95:577–581

    Article  Google Scholar 

  • Monteros MJ, Missaoui AM, Phillips DV, Walker DR, Boerma HR (2007) Mapping and confirmation of the ‘Hyuuga’ red-brown lesion resistance gene for Asian soybean rust. Crop Sci 47:829–836

    Article  CAS  Google Scholar 

  • Monteros MJ, Ha BK, Phillips DV, Boerma HR (2010) SNP assay to detect the ‘Hyuuga’ red-brown lesion resistance gene for Asian soybean rust. Theor Appl Genet 121:1023–1032

    Article  PubMed  Google Scholar 

  • Mueller TA, Miles MR, Morel W, Marios JJ, Wright DL, Kemerait RC, Levy C, Hartman GL (2009) Effect of fungicide and timing of application on soybean rust severity and yield. Plant Dis 93:243–248

    Article  Google Scholar 

  • Pathan MS, Sleper DA (2008) Advances in soybean breeding. In: Stacey G (ed) Genetics and genomics of soybean. Springer, NY

    Google Scholar 

  • Pham TA, Miles MR, Frederick RD, Hill CB, Hartman GL (2009) Differential responses of resistant soybean entries to isolates of Phakopsora pachyrhizi. Plant Dis 93:224–228

    Article  Google Scholar 

  • Rafalski A (2002) Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol 5:94–100

    Article  PubMed  CAS  Google Scholar 

  • Ray JD, Morel W, Smith JR, Frederick RD, Miles MR (2009) Genetics and mapping of adult plant rust resistance in soybean PI 587886 and PI 587880A. Theor Appl Genet 119:271–280

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro AS, Ubirajara J, Moreira V, Pierozzi EB, Rachid BF, Toledo JFF, Arias CAA, Soares RM, Godoy CV (2007) Genetic control of Asian rust in soybean. Euphytica 157:15–25

    Article  CAS  Google Scholar 

  • SAS Institute (2002) The SAS system for Windows. Release 9.2. SAS Institute, Cary

  • Schmutz J, Cannon S, Schlueter J, Ma J, Mitros T, Nelson W, Hyten D, Song Q, Thelen J, Cheng J, Xu D, Hellsten U, May G, Yu Y, Sakurai T, Umezawa T, Bhattacharyya M, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang X, Shinozaki K, Nguyen H, Wing R, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker R, Jackson S (2010) Genome sequence of the paleopolyploid soybean. Nature 463:178–183

    Article  PubMed  CAS  Google Scholar 

  • Schneider RW, Hollier CA, Whitman HK, Palm ME, McKenny JM, Hernández JR, Levy L, Devries-Paterson R (2005) First report of soybean rust caused by Phakopsora pachyrhizi in the continental United States. Plant Dis 89:774

    Article  Google Scholar 

  • Shastry BS (2004) Role of SNP/haplotype map in gene discovery and drug development: an overview. Drug Dev Res 62:143–150

    Article  CAS  Google Scholar 

  • Silva DCG, Yamanaka N, Brogin RL, Arias CAA, Nepomuceno AL, Di Mauro AO, Pereira SS, Nogueira LM, Passianotto ALL, Abdelnoor RV (2008) Molecular mapping of two loci that confer resistance to Asian rust in soybean. Theor Appl Genet 117:57–63

    Article  PubMed  CAS  Google Scholar 

  • Song QJ, Jia GF, Zhu YL, Grant D, Nelson RT, Hwang EY, Hyten DL, Cregan PB (2010) Abundance of SSR motifs and development of candidate polymorphic SSR markers (BARCSOYSSR_1.0) in soybean. Crop Sci 50:1950–1960

    Article  CAS  Google Scholar 

  • Song QJ, Hyten DL, Jia GF, Quigley C, Fickus E, Cregan PB (2012) Development and Evaluation of a high-density Illumina Infinium iSelect Beadchip SoySNP50K. In: Plant and animal genome conference XX. San Diego, CA, USA. http://pag.confex.com/pag/xx/webprogram/Paper4683.html

  • Tamura K, Dudley J, Ne Mi, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599

  • USDA-ARS (2012) National Genetic Resources Program. Germplasm Resources Information Network—(GRIN). (Online Database) National Germplasm Resources Laboratory, Beltsville, Maryland. Retrieved from http://www.ars-grin.gov/npgs/index.html

  • Utomo HS, Linscombe SD (2009) Current patents and future development underlying marker-assisted breeding in major grain crops. Rec Pat DNA Gene Seq 3:53–62

    Article  CAS  Google Scholar 

  • Van Ooijen JW, Voorrips RW (2001) Joinmap 3.0. Software for the calculation of genetic linkage maps. Plant Research International, Wageningen

  • Van Ooijen JW, Boer MP, Jansen RC, Maliepaard C (2002) MapQTL 4.0. Software for the calculation of QTL positions on genetic maps. Plant Research International, Wageningen

  • Wang D, Shi J, Carlson SR, Cregan PB, Ward RW, Diers BW (2003) A low-cost, high-throughput polyacrylamide gel electrophoresis system for genotyping with microsatellite DNA markers. Crop Sci 43:1828–1832

    Article  CAS  Google Scholar 

  • Yorinori JT, Paiva WM, Frederick RD, Costamilan LM, Bertagnoli PF, Hartman GL, Godoy CV, Nunes JJ (2005) Epidemics of soybean rust (Phakopsora pachyrhizi) in Brazil and Paraguay from 2001 to 2003. Plant Dis 89:675–677

    Article  Google Scholar 

  • Zhu YL, Song QJ, Hyten DL, Van Tassell CP, Matukumalli LK, Grimm DR, Hyatt SM, Fickus EW, Young ND, Cregan PB (2003) Single-nucleotide polymorphisms in soybean. Genetics 163:1123–1134

    PubMed  CAS  Google Scholar 

  • Zhu Q, Zheng X, Luo J, Gaut BS, Ge S (2007) Multilocus analysis of nucleotide variation of Oryza sativa and its wild relatives: severe bottleneck during domestication of rice. Mol Biol Evol 24:875–888

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by funding from the United Soybean Board.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian W. Diers.

Additional information

Communicated by H. T. Nguyen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, KS., Unfried, J.R., Hyten, D.L. et al. Molecular mapping of soybean rust resistance in soybean accession PI 561356 and SNP haplotype analysis of the Rpp1 region in diverse germplasm. Theor Appl Genet 125, 1339–1352 (2012). https://doi.org/10.1007/s00122-012-1932-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-012-1932-5

Keywords

Navigation