Skip to main content
Log in

Evidence of selection on fatty acid biosynthetic genes during the evolution of cultivated sunflower

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The identification of genes underlying the phenotypic transitions that took place during crop evolution, as well as the genomic extent of resultant selective sweeps, is of great interest to both evolutionary biologists and applied plant scientists. In this study, we report the results of a molecular evolutionary analysis of 11 genes that underlie fatty acid biosynthesis and metabolism in wild and cultivated sunflower (Helianthus annuus). Seven of these 11 genes showed evidence of selection at the nucleotide level, with 1 (FAD7) having experienced selection prior to domestication, 2 (FAD2-3 and FAD3) having experienced selection during domestication, and 4 (FAB1, FAD2-1, FAD6, and FATB) having experienced selection during the subsequent period of improvement. Sequencing of a subset of these genes from an extended panel of sunflower cultivars revealed little additional variation, and an analysis of the genomic region surrounding one of these genes (FAD2-1) revealed the occurrence of an extensive selective sweep affecting a region spanning at least ca. 100 kb. Given that previous population genetic analyses have revealed a relatively rapid decay of linkage disequilibrium in sunflower, this finding indicates the occurrence of strong selection and a rapid sweep.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Blackman BK, Scascitelli M, Kane NC, Luton HH, Rasmussen DA, Bye RA, Lentz DL, Rieseberg LH (2011) Sunflower domestication alleles support single domestication center in eastern North America. Proc Nat Acad Sci USA 108:14360–14365

    Article  PubMed  CAS  Google Scholar 

  • Bonaventure G, Salas JJ, Pollard MR, Ohlrogge JB (2003) Disruption of the FATB gene in Arabidopsis demonstrates an essential role of saturated fatty acids in plant growth. Plant Cell 15:1020–1033

    Article  PubMed  CAS  Google Scholar 

  • Braverman JM, Hudson RR, Kaplan NL, Langley CH, Stephan W (1995) The hitchhiking effect on the site frequency-spectrum of DNA polymorphisms. Genetics 140:783–796

    PubMed  CAS  Google Scholar 

  • Browse J, Kunst L, Anderson S, Hugly S, Somerville C (1989) A mutant of Arabidopsis deficient in the chloroplast 16-1/18-1 desaturase. Plant Physiol 90:522–529

    Article  PubMed  CAS  Google Scholar 

  • Browse J, Somerville C (1991) Glycerolipid synthesis—biochemistry and regulation. Ann Rev Plant Physiol Plant Mol Biol 42:467–506

    Article  CAS  Google Scholar 

  • Burger JC, Chapman MA, Burke JM (2008) Molecular insights into the evolution of crop plants. Am J Bot 95:113–122

    Article  PubMed  Google Scholar 

  • Burke JM, Burger JC, Chapman MA (2007) Crop evolution: from genetics to genomics. Curr Opin Genet Dev 17:525–532

    Article  PubMed  CAS  Google Scholar 

  • Burke JM, Knapp SJ, Rieseberg LH (2005) Genetic consequences of selection during the evolution of cultivated sunflower. Genetics 171:1933–1940

    Article  PubMed  CAS  Google Scholar 

  • Caicedo AL, Williamson SH, Hernandez RD, Boyko A, Fledel-Alon A, York TL, Polato NR, Olsen KM, Nielsen R, McCouch SR, Bustamante CD, Purugganan MD (2007) Genome-wide patterns of nucleotide polymorphism in domesticated rice. PLoS Genet 3:1745–1756

    Article  PubMed  CAS  Google Scholar 

  • Casa AM, Mitchell SE, Hamblin MT, Sun H, Bowers JE, Paterson AH, Aquadro CF, Kresovich S (2005) Diversity and selection in sorghum: simultaneous analyses using simple sequence repeats. Theor Appl Genet 111:23–30

    Article  PubMed  CAS  Google Scholar 

  • Casa AM, Mitchell SE, Jensen JD, Hamblin MT, Paterson AH, Aguadro CF, Kresovich S (2006) Evidence for a selective sweep on chromosome 1 of cultivated sorghum. Crop Sci 46:S27–S40

    Article  Google Scholar 

  • Chapman MA, Pashley CH, Wenzler J, Hvala J, Tang S, Knapp SJ, Burke JM (2008) A genomic scan for selection reveals candidates for genes involved in the evolution of cultivated sunflower (Helianthus annuus). Plant Cell 20:2931–2945

    Article  PubMed  CAS  Google Scholar 

  • Clark RM, Linton E, Messing J, Doebley JF (2004) Pattern of diversity in the genomic region near the maize domestication gene tb1. Proc Nat Acad Sci USA 101:700–707

    Article  PubMed  CAS  Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection. John Murray, London

    Google Scholar 

  • Darwin CR (1868) The Variation of Animals and Plants under Domestication. John Murray, London

    Google Scholar 

  • Durrett R, Schweinsberg J (2004) Approximating selective sweeps. Theor Popul Biol 66:129–138

    Article  PubMed  Google Scholar 

  • Eyre-Walker A, Gaut RL, Hilton H, Feldman DL, Gaut BS (1998) Investigation of the bottleneck leading to the domestication of maize. Proc Nat Acad Sci USA 95:4441–4446

    Article  PubMed  CAS  Google Scholar 

  • Gibson S, Falcone DL, Browse J, Somerville C (1994) Use of transgenic plants and mutants to study the regulation and function of lipid composition. Plant Cell Environ 17:627–637

    Article  CAS  Google Scholar 

  • Gross BL, Olsen KM (2010) Genetic perspectives on crop domestication. Trends Plant Sci 15:529–537

    Article  PubMed  CAS  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Harter AV, Gardner KA, Falush D, Lentz DL, Bye RA, Rieseberg LH (2004) Origin of extant domesticated sunflowers in eastern North America. Nature 430:201–205

    Article  PubMed  CAS  Google Scholar 

  • Harwood JL (2005) Fatty acid biosynthesis. In: Murphy DJ (ed) Plant lipids: biology, utilization and manipulation. Blackwell Publishing, Oxford

    Google Scholar 

  • Heiser CB Jr (1951) The sunflower among North American Indians. Proc Am Philos Soc 95:432–448

    Google Scholar 

  • Heiser CB Jr (1978) Taxonomy of Helianthus and origin of domesticated sunflower. In: Carter JF (ed) Sunflower science and technology. American Society of Agronomy, Madison, pp 31–53

    Google Scholar 

  • Heiser CB Jr (1988) Aspects of unconscious selection and the evolution of domesticated plants. Euphytica 37:77–81

    Article  Google Scholar 

  • Hudson RR, Kreitman M, Aguade M (1987) A test of neutral molecular evolution based on nucleotide data. Genetics 116:153–159

    PubMed  CAS  Google Scholar 

  • Kane NC, Gill N, King MG, Bowers JE, Berges H, Gouzy J, Bachlava E, Langlade NB, Lai Z, Stewart M, Burke JM, Vincourt P, Knapp SJ, Rieseberg LH (2011) Progress towards a reference genome for sunflower. Botany-Botanique 89:429–437

    Article  Google Scholar 

  • Kaplan NL, Hudson RR, Langley CH (1989) The “hitchhiking effect” revisited. Genetics 123:887–899

    PubMed  CAS  Google Scholar 

  • Kim Y, Nielsen R (2004) Linkage disequilibrium as a signature of selective sweeps. Genetics 167:1513–1524

    Article  PubMed  Google Scholar 

  • Kolkman JM, Berry ST, Leon AJ, Slabaugh MB, Tang S, Gao WX, Shintani DK, Burke JM, Knapp SJ (2007) Single nucleotide polymorphisms and linkage disequilibrium in sunflower. Genetics 177:457–468

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Bennetzen JL (1999) Plant retrotransposons. Annu Rev Genet 33:479–532

    Article  PubMed  CAS  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  PubMed  CAS  Google Scholar 

  • Linder CR (2000) Adaptive evolution of seed oils in plants: accounting for the biogeographic distribution of saturated and unsaturated fatty acids in seed oils. Am Nat 156:442–458

    Article  Google Scholar 

  • Liu AZ, Burke JM (2006) Patterns of nucleotide diversity in wild and cultivated sunflower. Genetics 173:321–330

    Article  PubMed  CAS  Google Scholar 

  • Mandel JR, Dechaine JM, Marek LF, Burke JM (2011) Genetic diversity and population structure in cultivated sunflower and a comparison to its wild progenitor, Helianthus annuus L. Theor Appl Genet 123:693–704

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Force E, Cantisan S, Serrano-Vega MJ, Garces R (2000) Acyl–acyl carrier protein thioesterase activity from sunflower (Helianthus annuus L.) seeds. Planta 211:673–678

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Rivas JM, Sperling P, Luhs W, Heinz E (2001) Spatial and temporal regulation of three different microsomal oleate desaturase genes (FAD2) from normal-type and high-oleic varieties of sunflower (Helianthus annuus L.). Mol Breed 8:159–168

    Article  CAS  Google Scholar 

  • Maynard-Smith J, Haigh J (1974) Hitch-hiking effect of a favorable gene. Genet Res 23:23–35

    Article  Google Scholar 

  • Nielsen R (2005) Molecular signatures of natural selection. Ann Rev Genet, pp 197–218

  • Ohlrogge JB, Jaworski JG (1997) Regulation of fatty acid synthesis. Ann Rev Plant Physiol Plant Mol Biol 48:109–136

    Article  CAS  Google Scholar 

  • Olsen KM, Caicedo AL, Polato N, McClung A, McCouch S, Purugganan MD (2006) Selection under domestication: evidence for a sweep in the rice Waxy genomic region. Genetics 173:975–983

    Article  PubMed  CAS  Google Scholar 

  • Page RDM (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  • Palaisa K, Morgante M, Tingey S, Rafalski A (2004) Long-range patterns of diversity and linkage disequilibrium surrounding the maize Y1 gene are indicative of an asymmetric selective sweep. Proc Nat Acad Sci USA 101:9885–9890

    Article  PubMed  CAS  Google Scholar 

  • Pickersgill B (2010) Domestication of plants revisited - Darwin to the present day. Bot J Linn Soc 162:S37–S46

    Google Scholar 

  • Pidkowich MS, Nguyen HT, Heilmann I, Ischebeck T, Shanklin J (2007) Modulating seed beta-ketoacyl-acyl carrier protein synthase II level converts the composition of a temperate seed oil to that of a palm-like tropical oil. Proc Nat Acad Sci USA 104:4742–4747

    Article  PubMed  CAS  Google Scholar 

  • Putt ED (1997) Early history of sunflower. In: Schneiter AA (ed) Sunflower Technology and Production. American Society of Agronomy, Madison

    Google Scholar 

  • Rieseberg LH, Seiler GJ (1990) Molecular evidence and the origin and development of the domesticated sunflower (Helianthus annuus, Asteraceae). Econ Bot 44(Supplement 3):79–91

    Article  Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics Methods and Protocols: Methods in Molecular Biology, http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi Humana Press, Totowa, NJ, pp 365-386

  • Salamov AA, Solovyev VV (2000) Ab initio gene finding in Drosophila genomic DNA. Genome Res 10:516–522

    Article  PubMed  CAS  Google Scholar 

  • Schuppert GF, Tang SX, Slabaugh MB, Knapp SJ (2006) The sunflower high-oleic mutant Ol carries variable tandem repeats of FAD2-1, a seed-specific oleoyl-phosphatidyl choline desaturase. Mol Breeding 17:241–256

    Article  CAS  Google Scholar 

  • Shanklin J, Cahoon EB (1998) Desaturation and related modifications of fatty acids. Annual Review of Plant Physiology and Plant Molecular Biology 49:611–641

    Article  PubMed  CAS  Google Scholar 

  • Tang S, Knapp SJ (2003) Microsatellites uncover extraordinary diversity in native American land races and wild populations of cultivated sunflowers. Theoretical and Applied Genetics 106:990–1003

    PubMed  CAS  Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: Unlocking genetic potential from the wild. Science 277:1063–1066

    Article  PubMed  CAS  Google Scholar 

  • Tian F, Stevens NM, Buckler ES (2009) Tracking footprints of maize domestication and evidence for a massive selective sweep on chromosome 10. Proc Nat Acad Sci USA 106:9979–9986

    Article  PubMed  CAS  Google Scholar 

  • Vigouroux Y, McMullen M, Hittinger CT, Houchins K, Schulz L, Kresovich S, Matsuoka Y, Doebley J (2002) Identifying genes of agronomic importance in maize by screening microsatellites for evidence of selection during domestication. Proc Nat Acad Sci USA 99:9650–9655

    Article  PubMed  CAS  Google Scholar 

  • Wallis and Browse (2002) Mutants of Arabidopsis reveal many roles for membrane lipids. Prog Lipid Res 41:254–278

    Article  Google Scholar 

  • Watterson GA (1975) On the number of segregating sites in genetic models without recombination. Theor Popul Biol 7:256–276

    Article  PubMed  CAS  Google Scholar 

  • Wills DM, Burke JM (2006) Chloroplast DNA variation confirms a single origin of domesticated sunflower (Helianthus annuus L.). J Hered 97:403–408

    Article  PubMed  CAS  Google Scholar 

  • Wright SI, Bi IV, Schroeder SG, Yamasaki M, Doebley JF, McMullen MD, Gaut BS (2005) The effects of artificial selection on the maize genome. Science 308:1310–1314

    Article  PubMed  CAS  Google Scholar 

  • Wright SI, Charlesworth B (2004) The HKA test revisited: a maximum-likelihood-ratio test of the standard neutral model. Genetics 168:1071–1076

    Article  PubMed  Google Scholar 

  • Xu Z, Wang H (2007) LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res 35:W265–W268

    Article  PubMed  Google Scholar 

  • Yamasaki M, Tenaillon MI, Bi IV, Schroeder SG, Sanchez-Villeda H, Doebley JF, Gaut BS, McMullen MD (2005) A large-scale screen for artificial selection in maize identifies candidate agronomic loci for domestication and crop improvement. Plant Cell 17:2859–2872

    Article  PubMed  CAS  Google Scholar 

  • Zhu QH, Zheng XM, Luo JC, Gaut BS, Ge S (2007) Multilocus analysis of nucleotide variation of Oryza sativa and its wild relatives: Severe bottleneck during domestication of rice. Mol Biol Evol 24:875–888

    Article  PubMed  CAS  Google Scholar 

  • Zohary D (2004) Unconscious selection and the evolution of domesticated plants. Econ Bot 58:5–10

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Burke.

Additional information

Communicated by M. Frisch.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 kb)

Supplementary material 2 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chapman, M.A., Burke, J.M. Evidence of selection on fatty acid biosynthetic genes during the evolution of cultivated sunflower. Theor Appl Genet 125, 897–907 (2012). https://doi.org/10.1007/s00122-012-1881-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-012-1881-z

Keywords

Navigation