Skip to main content
Log in

Major QTL for carrot color are positionally associated with carotenoid biosynthetic genes and interact epistatically in a domesticated × wild carrot cross

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

We performed QTL analyses for pigment content on a carotenoid biosynthesis function map based on progeny of a wild white carrot (QAL) which accumulates no pigments × domesticated orange carrot (B493), one of the richest sources of carotenoid pigments—mainly provitamin A α- and β- carotenes. Two major interacting loci, Y and Y 2 on linkage groups 2 and 5, respectively, control much variation for carotenoid accumulation in carrot roots. They are associated with carotenoid biosynthetic genes zeaxanthin epoxidase and carotene hydroxylase and carotenoid dioxygenase gene family members as positional candidate genes. Dominant Y allele inhibits carotenoid accumulation. When Y is homozygous recessive, carotenoids that accumulate are either only xanthophylls in Y 2 __ plants, or both carotenes and xanthophylls, in y 2 y 2 plants. These two genes played a major role in carrot domestication and account for the significant role that modern carrot plays in vitamin A nutrition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Banga O (1957) Origin of the European cultivated carrot. Euphytica 6:54–63

    Google Scholar 

  • Banga O (1963) Main types of the western carotene carrot an their origin. W. E. J. Tjeenk Willink, Zwolle, p 153

    Google Scholar 

  • Beavis WD (1998) QTL analyses: power, precision and accuracy. In: Paterson AH (ed) Molecular analysis of complex traits. CRC Press, Boca Raton, pp 45–161

    Google Scholar 

  • Ben Chaim A, Paran I, Grube R, Jahn M, van Wijk R, Peleman J (2001) QTL mapping of fruit related traits in pepper (Capsicum annuum). Theor Appl Genet 102:1016–1028

    Article  Google Scholar 

  • Boiteux LS (2000) Characterization of the Meloidogyne javanica resistance locus employing molecular markers and isolation of candidate disease resistance loci in the carrot (Daucus carota L.) genome. Ph.D. Dissertation, University of Wisconsin-Madison, 265 pp

  • Boiteux LS, Fonseca MEN, Simon PW (1999) Effects of plant tissue and DNA purification methods on randomly amplified polymorphic DNA-based genetic fingerprinting analysis in carrot. J A Soc Hortic Sci 124:32–38

    CAS  Google Scholar 

  • Boiteux LS, Belter JG, Roberts PA, Simon PW (2000) RAPD linkage map of the genomic region encompassing the root-knot nematode (Meloidogyne javanica) resistance locus in carrot. Theor Appl Genet 100:439–446

    Article  CAS  Google Scholar 

  • Bradeen JM, Simon PW (1998) Conversion of an AFLP fragment linked to the carrot Y 2 locus to a simple, codominant, PCR-based marker form. Theor Appl Genet 97:960–967

    Article  CAS  Google Scholar 

  • Broman KW (2003) Mapping quantitative trait loci in the case of a spike in the phenotype distribution. Genetics 163:1169–1175

    PubMed  Google Scholar 

  • Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890

    Article  CAS  PubMed  Google Scholar 

  • Buckner B, Kelson TL, Robertson DS (1990) Cloning of the y1 locus of maize, a gene involved in the biosynthesis of carotenoids. Plant Cell 2:867–876

    Article  CAS  PubMed  Google Scholar 

  • Buckner B, Miguel PS, Janik-Buckner D, Bennetzen JL (1996) The y1 gene of maize codes for phytoene synthase. Genetics 143:479–488

    CAS  PubMed  Google Scholar 

  • Buishand JG, Gabelman WH (1979) Investigations on the inheritance of color and carotenoid content in phloem and xylem of carrot roots (Daucus carota L.). Euphytica 28:611–632

    Article  CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    CAS  PubMed  Google Scholar 

  • Craft NE, Soares JH Jr (1992) Relative solubility, stability, and absorptivity of lutein and beta-carotene in organic solvents. J Agric Food Chem 40:431–434

    Article  CAS  Google Scholar 

  • Doebley J, Stec A, Wendel J, Edwards M (1990) Genetic and morphological analysis of a maize-teosinte F2 population: implications for the origins of maize. Proc Natl Acad Sci (USA) 87:9888–9892

    Article  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Fray RJ, Grierson D (1993) Identification and genetic analysis of normal and mutant phytoene synthase genes of tomato by sequencing, complementation and co-suppression. Plant Molec Biol 22:589–602

    Article  CAS  Google Scholar 

  • Gepts P (2002) A comparison between crop domestication, classical plant breeding, and genetic engineering. Crop Sci 42:1780–1790

    Article  Google Scholar 

  • Grandillo S, Tanksley SD (1996) QTL analysis of horticultural traits differentiating the cultivated tomato from the closely related species Lycopersicon pimpinellifolium. Theor Appl Genet 92:935–951

    Article  CAS  Google Scholar 

  • Huh JH, Kang BC, Nahm SH, Kim S, Ha KS, Lee MH, Kim BD (2001) A candidate gene approach identified phytoene synthase as the locus for mature fruit color in red pepper (Capsicum spp.). Theor Appl Genet 102:524–530

    Article  CAS  Google Scholar 

  • Ihaka R, Gentleman R (1996) R: A language for data analysis and graphics. J Comput Graph Stat 5:299–314

    Article  Google Scholar 

  • Isaacson T, Ronen G, Zamir D, Hirschberg J (2002) Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of β-carotene and xanthophylls in plants. Plant Cell 14:333–342

    Article  CAS  PubMed  Google Scholar 

  • Just BJ, Santos CAF, Fonseca MEN, Boiteux LS, Oloizia BB, Simon PW (2007) Carotenoid biosynthesis structural genes in carrot (Daucus carota): isolation, sequence-characterization, single nucleotide polymorphism (SNP) markers and genome mapping. Theor Appl Genet 114:693–704

    Article  CAS  PubMed  Google Scholar 

  • Kruglyak L, Lander ES (1995) A nonparametric approach for mapping quantitative trait loci. Genetics 139:1421–1428

    CAS  PubMed  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    CAS  PubMed  Google Scholar 

  • Lefebvre V, Kuntz M, Camara B, Palloix A (1998) The capsanthin-capsorubin synthase gene: a candidate gene for the y locus controlling the red fruit colour in pepper. Plant Mol Biol 36:785–789

    Article  CAS  PubMed  Google Scholar 

  • Li L, Paolillo DJ, Parthasarathy MV, DiMuzio EM, Garvin DF (2001) A novel gene mutation that confers abnormal patterns of β-carotene accumulation in cauliflower (Brassica oleracea var. botrytis. Plant J 26:59–67

    Article  CAS  PubMed  Google Scholar 

  • Li L, Lu S, Van Eck J, O’Halloran D, Zhou X, Lopez AB, Cosman K, Conlin B, Paolillo D, Garvin DF, Vrebalov J, Kochian LV, Kupper H, Earle E, Cao J (2006) The cauliflower or gene encodes a cysteine-rich zinc finger domain-containing protein that induces high-level of b-carotene accumulation. Plant Cell 18:3594–3605

    Article  PubMed  CAS  Google Scholar 

  • Liu Y-S, Gur A, Ronen G, Causse M, Damidaux R, Buret M, Hirschberg J, Zamir D (2004) There is more to tomato fruit colour than candidate carotenoid genes. Plant Biotech J 1:195–207

    Article  Google Scholar 

  • Marshall SW, Tracy WF (2003) Sweet corn. In: Ramstad PE, White P (eds) Corn chemistry and technology, 2nd edn. Amer Assoc Cereal Chem, Minneapolis, pp 537–569

    Google Scholar 

  • Palaisa K, Morgante M, Williams M, Rafalski A (2003) Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci. Plant Cell 15:1795–1806

    Article  CAS  PubMed  Google Scholar 

  • Pflieger S, Lefebvre V, Causse M (2000) The candidate gene approach in plant genetics: a review. Mol Breed 7:275–291

    Article  Google Scholar 

  • Poncet V, Martel E, Allouis S, Devos KM, Lamy F, Sarr A, Robert T (2002) Comparative analysis of QTLs affecting domestication traits between two domesticated × wild pearl millet (Pennisetum glaucum L. Poaceae) crosses. Theor Appl Genet 104:965–975

    Article  CAS  PubMed  Google Scholar 

  • Ronen G, Cohen M, Zamir D, Hirschberg J (1999) Regulation of carotenoid biosynthesis during tomato fruit development: expression of the gene for lycopene epsilon-cyclase is down-regulated during ripening and is elevated in the mutant Delta. Plant J 17:341–351

    Article  CAS  PubMed  Google Scholar 

  • Ronen G, Carmel-Goren L, Zamir D, Hirschberg J (2000) An alternative pathway to β-carotene formation in plant chromoplasts discovered by map-based cloning in Beta and old-gold color mutations in tomato. Proc Natl Acad Sci (USA) 97:11102–11107

    Article  CAS  Google Scholar 

  • Santos CAF (2001) Biometrical studies and quantitative trait loci associated with major products of the carotenoid pathway of carrot (Daucus carota L.). Dissertation, University of Wisconsin-Madison, 265 pp

  • Santos CAF, Simon PW (2002) QTL analyses reveal clustered loci for accumulation of major provitamin A carotenes and lycopene in carrot roots. Mol Genet Genom 268:122–129

    Article  CAS  Google Scholar 

  • Santos CAF, Simon PW (2006) Heritabilities and minimum gene number estimates of carrot carotenoids. Euphytica 151:79–86

    Article  CAS  Google Scholar 

  • Simon PW (1996) Inheritance and expression of purple and yellow storage root color in carrot. J Hered 87:63–66

    Google Scholar 

  • Simon PW (2000) Domestication, historical development, and modern breeding of carrot. Plant Breeding Rev 19:157–190

    Google Scholar 

  • Simon PW, Wolff XY (1987) Carotenes in typical and dark orange carrots. J Agric Food Chem 35:1017–1022

    Article  CAS  Google Scholar 

  • Simon PW, Peterson CE, Gabelman WH (1990) B493 and B9304, carrot inbreds or use in breeding, genetics and tissue culture. HortScience 25:815

    Google Scholar 

  • Simon PW, Pollak LM, Clevidence BA, Holden JM, Haytowitz DB (2009) Plant breeding for human nutrition. Plant Breeding Rev 31:325–392

    Article  CAS  Google Scholar 

  • Surles RL, Weng Ning, Simon PW, Tanumihardjo SA (2004) Carotenoid profiles and consumer sensory evaluation of specialty carrots (Daucus carota. L.) of various colors. J Agric Food Chem 52:3417–3421

    Article  CAS  PubMed  Google Scholar 

  • Thorup TA, Tanyolac B, Livingstone KD, Popovsky S, Paran I, Jahn M (2000) Candidate gene analysis of organ pigmentation loci in the Solanaceae. Proc Natl Acad Sci (USA) 97:11192–11197

    Article  CAS  Google Scholar 

  • Vivek BS, Simon PW (1999) Linkage relationships among molecular markers and storage root traits of carrot (Daucus carota L. ssp. sativus). Theor App Genet 99:58–64

    Article  CAS  Google Scholar 

  • Wright S (1934) An analysis of variability in number of digits in an inbred strain of guinea pigs. Genetics 19:506–536

    CAS  PubMed  Google Scholar 

  • Xiong L, Liu K, Dai X, Xu C, Zhang Q (1999) Identification of genetic factors controlling domestication related traits of rice using an F2 population of a cross between Oryza sativa and O. rufipogon. Theor Appl Genet 98:243–251

    Article  CAS  Google Scholar 

  • Xu S, Atchley WR (1996) Mapping quantitative trait loci for complex binary diseases using line crosses. Genetics 143:1417–1424

    CAS  PubMed  Google Scholar 

  • Yau YY, Simon PW (2003) A 2.5-kb insert eliminates acid soluble invertase isozyme II transcript in carrot (Daucus carota L.) roots, causing high sucrose accumulation. Plant Mol Biol 53:151–162

    Article  CAS  PubMed  Google Scholar 

  • Yi N, Xu S (1999) A random model approach to mapping quantitative trait loci for complex binary traits in outbred populations. Genetics 153:1029–1040

    CAS  PubMed  Google Scholar 

  • Zou F, Yandell BS, Fine JP (2003) Rank-based statistical methodologies for quantitative trait locus mapping. Genetics 165:1599–1605

    PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Initiative for Future Agriculture Food Systems Grant number 2000-4258 from the USDA Cooperative Research, Education, and Extension Service. The senior author acknowledges the generous support of the Gabelman-Shippo Distinguished Graduate Fellowship in the Plant Breeding and Plant Genetics Program of the University of Wisconsin-Madison. We are grateful for the proficient technical assistance of Douglas Senalik.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp W. Simon.

Additional information

Communicated by I. Paran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Just, B.J., Santos, C.A.F., Yandell, B.S. et al. Major QTL for carrot color are positionally associated with carotenoid biosynthetic genes and interact epistatically in a domesticated × wild carrot cross. Theor Appl Genet 119, 1155–1169 (2009). https://doi.org/10.1007/s00122-009-1117-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-009-1117-z

Keywords

Navigation