Skip to main content
Log in

A region of barley chromosome 6H harbors multiple major genes associated with net type net blotch resistance

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Net type net blotch (NTNB), caused by Pyrenophora teres f. teres Drechs., is prevalent in barley growing regions worldwide. A population of 118 doubled haploid (DH) lines developed from a cross between barley cultivars ‘Rika’ and ‘Kombar’ were used to evaluate resistance to NTNB due to their differential reaction to various isolates of P. teres f. teres. Rika was resistant to P. teres f. teres isolate 15A and susceptible to isolate 6A. Conversely, Kombar was resistant to 6A, but susceptible to 15A. A progeny isolate of a 15A × 6A cross identified as 15A × 6A#4 was virulent on both parental lines. The Rika/Kombar (RK) DH population was evaluated for disease reactions to the three isolates. Isolate 15A induced a resistant:susceptible ratio of 78:40 (R:S) whereas isolate 6A induced a resistant:susceptible ratio of 40:78. All but two lines had opposite disease reactions indicating two major resistance genes linked in repulsion. Progeny isolate 15A × 6A#4 showed a resistant:susceptible ratio of 1:117 with the one resistant line also being the single line that was resistant to both 15A and 6A. An RK F2 population segregated in a 1:3 (R:S) ratio for both 15A and 6A indicating that resistance is recessive. Molecular markers were used to identify a region on chromosome 6H that harbors the two NTNB resistance genes. This work shows that multiple NTNB resistance genes exist at the locus on chromosome 6H, and the recombinant DH line harboring the resistance alleles from both parents will be useful for the development of NTNB-resistant barley germplasm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aljanabi SM, Martinez I (1997) Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res 25(20):4692–4693

    Article  PubMed  CAS  Google Scholar 

  • Bockelman HE, Sharp EL, Eslick RF (1977) Trisomic analysis of genes for resistance to scald and net blotch in several barley cultivars. Can J Bot 55:2142–2148

    Article  Google Scholar 

  • Cakir M, Gupta S, Platz GJ, Ablett GA, Loughman R, Emebiri LC, Poulsen D, Li CD, Lance RCM, Galway NW, Jones MGK, Appels R (2003) Mapping and validation of the genes for resistance to Pyrenophora teres f. teres in barley (Hordeum vulgare L.). Aust J Agric Res 54:1369–1377

    Article  CAS  Google Scholar 

  • Chao S, Zhang W, Dubcovsky J, Sorrells M (2007) Evaluation of genetic diversity and genome-wide linkage disequilibrium among U.S. wheat (Triticum aestivum L.) germplasm representing different market classes. Crop Sci 47:1018–1030

    Article  CAS  Google Scholar 

  • Cromey MG, Parkes RA (2003) Pathogenic variation in Drechslera teres in New Zealand. New Zealand Plant Pro 56:251–256

    Google Scholar 

  • Devaux P, Kilian A, Kleinhofs A (1995) Comparative mapping of the barley genome with male and female recombination-derived, doubled haploid populations. Mol Gen Genet 249:600–608

    Article  PubMed  CAS  Google Scholar 

  • Douiyssi A, Rasmusson DC, Roelfs AP (1998) Responses of barley cultivars and lines to isolates of Pyrenophora teres. Plant Dis 82:316–321

    Article  Google Scholar 

  • Emebiri LC, Platz G, Moody DB (2005) Disease resistance genes in a doubled haploid population of two-rowed barley segregating for malting quality attributes. Aust J Agric Res 56:49–56

    Article  CAS  Google Scholar 

  • Faris JD, Haen KM, Gill BS (2000) Saturation mapping of a gene rich recombination hot spot region in wheat. Genetics 154:823–835

    PubMed  CAS  Google Scholar 

  • Flor HH (1942) Inheritance of pathogenicity in Melampsora lini. Phytopathology 32:653–668

    Google Scholar 

  • Friesen TL, Faris JD, Lai Z, Steffenson BJ (2006) Identification and chromosomal location of major genes for resistance to Pyrenophora teres in a barley doubled haploid population. Genome 409:855–859

    Article  CAS  Google Scholar 

  • Friesen TL, Meinhardt SW, Faris JD (2007) The Stagonospora nodorum-wheat pathosystem involves multiple proteinaceous host-selective toxins and corresponding host sensitivity genes that interact in an inverse gene-for-gene manner. Plant J 51:681–692

    Article  PubMed  CAS  Google Scholar 

  • Friesen TL, Faris JD, Solomon PS, Oliver RP (2008) Host specific toxins: effectors of necrotrophic pathogenicity. Cell Microbiol 10:1421–1428

    Article  PubMed  CAS  Google Scholar 

  • Graner A, Jahoor A, Schondelmaier J, Siedler H, Pillen K, Fischbeck G, Wenzel G, Herrmann RG (1991) Construction of an RFLP map of barley. Theor Appl Genet 83:250–256

    Article  Google Scholar 

  • Grewal TS, Rossnagel BG, Pozniak CJ, Scoles GJ (2008) Mapping quantitative trait loci associated with barley net blotch resistance. Theor Appl Genet 116:529–539

    Article  PubMed  CAS  Google Scholar 

  • Gupta S, Loughman R (2001) Current virulence of Pyrenophora teres on barley in Western Australia. Plant Dis 85:960–966

    Article  Google Scholar 

  • Heun M, Kennedy AE, Anderson JA, Lapitan NLV, Sorrells ME, Tanksley SD (1991) Construction of a restriction fragment length polymorphism map for barley (Hordeum vulgare). Genome 34:437–447

    Google Scholar 

  • Ho KM, Tekauz A, Choo TM, Martin RA (1996) Genetic studies on net blotch resistance in a barley cross. Can J Plant Sci 76(4):715–720

    Google Scholar 

  • Künzel G, Korzun L, Meister A (2000) Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics 154:397–412

    PubMed  Google Scholar 

  • Lai Z, Faris JD, Weiland JJ, Steffenson BJ, Friesen TL (2007) Genetic mapping of Pyrenophora teres f teres genes conferring avirulence on barley. Fungal Genet Biol 44:323–329

    Article  PubMed  CAS  Google Scholar 

  • Lamari L, Strelkov SE, Yahyaoui A, Smith RB (2003) The identification of two races of Pyrenophora tritici-repentis from the host center of diversity confirms a one-to-one relationship in tan spot of wheat. Phytopathology 93:391–396

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newberg L (1987) Mapmaker: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Liu ZH, Anderson JA, Hu J, Friesen TL, Rasmussen JB, Faris JD (2005) A wheat intervarietal genetic linkage map based on microsatelite and target region amplified polymorphism markers and its utility for detecting quantitative trait loci. Theor Appl Genet 111:782–794

    Article  PubMed  CAS  Google Scholar 

  • Ma ZQ, Lapitan NLV, Steffenson B (2004) QTL mapping of net blotch resistance genes in a doubled-haploid population of six-rowed barley. Euphytica 137:291–296

    Article  CAS  Google Scholar 

  • Manninen O, Kalendar R, Robinson J, Schulman AH (2000) Application of BARE-1 retrotransposon markers to the mapping of a major resistance gene for net blotch in barley. Mol Gen Genet 264:325–334

    Article  PubMed  CAS  Google Scholar 

  • Mathre DE (1997) Compendium of barley diseases, second edition. The American Phytopathological Society. APS Press, St. Paul

    Google Scholar 

  • Nelson JC (1997) QGENE: software for marker-based genomic analysis and breeding. Mol Breed 3:239–245

    Article  CAS  Google Scholar 

  • Raman H, Platz GJ, Chalmers KJ, Raman R, Read BJ, Barr AR, Moody DB (2003) Mapping of genetic regions associated with net form of net blotch resistance in barley. Aust J Agric Res 54:1359–1367

    Article  CAS  Google Scholar 

  • Ramsay L, Macaulay M, Degli-Ivanissevich S, MacLean K, Cardle L, Fuller J, Edwards KJ, Tuvesson S, Morgante M, Massari A, Maestri E, Marmiroli N, Sjakste T, Ganal M, Powell W, Waugh R (2000) A simple sequence repeat-based linkage map of barley. Genetics 156:1997–2005

    PubMed  CAS  Google Scholar 

  • Randhawa HS, Dilbirligi M, Sidhu D, Erayman M, Sandhu D, Bondareva S, Chao S, Lazo GR, Anderson OD, Miftahudin , Gustafson JP, Echalier B, Qi LL, Gill BS, Akhunov ED, Dvořák J, Linkiewicz AM, Ratnasiri A, Dubcovsky J, Bermudez-Kandianis CE, Greene RA, Sorrells ME, Conley EJ, Anderson JA, Peng JH, Lapitan NLV, Hossain KG, Kalavacharla V, Kianian SF, Pathan MS, Nguyen HT, Endo TR, Close TJ, McGuire PE, Qualset CQ, Gill KS (2004) Deletion mapping of homoeologous group 6-specific wheat expressed sequence tags. Genetics 168:677–686

    Article  PubMed  CAS  Google Scholar 

  • Richter K, Schondelmaier J, Jung C (1998) Mapping of quantitative trait loci affecting Drechslera teres resistance in barley with molecular markers. Theor Appl Genet 97:1225–1234

    Article  CAS  Google Scholar 

  • Rostoks N, Mudie S, Cardle L, Russell J, Ramsay L, Booth A, Svensson JT, Wanamaker SI, Walia H, Rodriguez EM, Hedley PE, Liu H, Morris J, Close TJ, Marshall DF, Waugh R (2005) Genome-wide SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress. Mol Genet Genomics 274:515–527

    Article  PubMed  CAS  Google Scholar 

  • Rozen N, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    PubMed  CAS  Google Scholar 

  • Schaller CW (1955) Inheritance of resistance to net blotch of barley. Phytopathology 45:174–176

    Google Scholar 

  • Shipton WA, Khan TN, Boyd WJR (1973) Net blotch of barley. Rev Plant Pathol 52:269–290

    Google Scholar 

  • Steffenson BJ, Webster RK (1992) Quantitative resistance to Pyrenophora teres in barley. Phytopathology 82:407–411

    Article  Google Scholar 

  • Steffenson BJ, Webster RK, Jackson LF (1991) Reduction in yield loss using incomplete resistance to Pyrenophora teres f teres in barley. Plant Dis 75:96–100

    Google Scholar 

  • Steffenson BJ, Hayes PM, Kleinhofs A (1996) Genetics of seedling and adult plant resistance to net blotch (Pyrenophora teres f. teres) and spot blotch (Cochliobolus sativus) in barley. Theor Appl Genet 92:552–558

    Article  CAS  Google Scholar 

  • Steffenson B, Pederson J, Pederson V (1999) Common barley diseases in North Dakota. Extension Bulletin, NDSU Ext. Service

  • Stein N, Prasad M, Scholz U, Thiel T, Zhang H, Wolf M, Kota R, Varshney RK, Perovic D, Grosse I, Graner A (2007) A 1,000-loci transcript map of the barley genome: new anchoring points for integrative grass genomics. Theor Appl Genet 114:823–829

    Article  PubMed  CAS  Google Scholar 

  • Tekauz A (1985) A numerical scale to classify reactions of barley to Pyrenophora teres. Can J Plant Pathol 7:181–183

    Google Scholar 

  • Weiland JJ, Steffenson BJ, Cartwright RD, Webster RK (1999) Identification of molecular genetic markers in Pyrenophora teres f. teres associated with low virulence on ‘Harbin’ barley. Phytopathology 89:176–181

    Article  PubMed  CAS  Google Scholar 

  • Wolpert TJ, Dunkle LD, Ciuffetti LM (2002) Host-selective toxins and avirulence determinants: what’s in a name. Annu Rev Phytopathol 40:251–285

    Article  PubMed  CAS  Google Scholar 

  • Wu H-L, Steffenson BJ, Li Y, Oleson AE, Zhong S (2003) Genetic variation for virulence and RFLP markers in Pyrenophora teres. Can J Plant Pathol 25:82–90

    CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to thank Danielle Holmes for technical assistance. This research was supported by the US Barley Genome Project, the American Malting Barley Association and by USDA-ARS CRIS projects 5442-22000-043-00D and 5442-22000-030-00D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. L. Friesen.

Additional information

Communicated by A. Graner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abu Qamar, M., Liu, Z.H., Faris, J.D. et al. A region of barley chromosome 6H harbors multiple major genes associated with net type net blotch resistance. Theor Appl Genet 117, 1261–1270 (2008). https://doi.org/10.1007/s00122-008-0860-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-008-0860-x

Keywords

Navigation