Skip to main content
Log in

Invasive Stimulationsverfahren und EEG-Diagnostik bei Epilepsien

Invasive stimulation procedures and EEG diagnostics in epilepsy

  • Leitthema
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Eine Epilepsiebehandlung durch Stimulation wurde experimentell und in kleinen Fallserien bereits seit den 1970er Jahren durchgeführt. Seit Einführung der Vagusnervstimulation 1997 und intrakranieller Stimulationsverfahren seit 2011 in die klinische Patientenversorgung stellt die invasive Stimulationsbehandlung eine sich rasch entwickelnde, wenngleich zahlenmäßig in Europa noch nicht stark genutzte Behandlungsoption dar. Während die Vagusnervstimulation vor allem in den USA häufig eingesetzt wird, sind intrakranielle Stimulationsverfahren regional unterschiedlich verfügbar. Um die Effektivität der Stimulationsverfahren sowie Kriterien zur Indikationsstellung weiterzuentwickeln und eine geringe Komplikationsrate zu sichern, ist insbesondere bei den intrakraniellen Stimulationen eine Konzentration auf operativ erfahrene Zentren und eine multizentrische Datensammlung und -evaluation erforderlich.

Invasive EEG-Ableitungen mit subduralen Platten- und Streifenelektroden und mehr noch mit stereotaktisch implantierten Tiefenelektroden werden in den letzten Jahren immer häufiger in der prächirurgischen Epilepsiediagnostik angewendet. Sie kommen zum Einsatz, wenn die epileptogene Zone und deren Ausdehnung durch nichtinvasive Verfahren nicht genau genug bestimmbar ist oder nicht sicher von eloquenten Kortexarealen abgegrenzt werden kann. Komplikationen umfassen intrakranielle Blutungen, Infektionen oder auch erhöhter Hirndruck. Allerdings sind überdauernde Defizite oder schwerere Komplikationen selten (≤2 %). Da invasive Ableitungen bei komplexeren Fällen zum Einsatz kommen, bleibt das postoperative Anfallsoutcome hinter dem Outcome derjenigen Fälle zurück, deren noninvasive Diagnostik bereits eine klare Resektionsstrategie erkennen lässt. Es liegt aber bei weitem über der Anfallsfreiheitsrate, die durch eine alleinige weitere Therapie mit Antikonvulsiva erreicht werden würde.

Abstract

Stimulation has been performed experimentally and in small case series to treat epilepsy since the 1970s. Since the introduction of vagus nerve stimulation in 1997 and intracranial stimulation methods in 2011 into patient care, invasive stimulation has become a rapidly developing but infrequently used therapeutic option in Europe. Whereas vagus nerve stimulation is frequently used, particularly in the USA, intracranial stimulation differs in its regional availability. In order to improve the efficacy of stimulation, develop criteria for its use and assure low complication rates, a concentration on experienced centers and multicenter data acquisition and sharing are needed.

Invasive electroencephalographic (EEG) monitoring with subdural electrodes and especially with stereotactically implanted depth electrodes have been used increasingly more often for presurgical evaluation in recent years. They are applied when non-invasive diagnostics show insufficient results to exactly identify the location and extent of the epileptogenic zone or cannot be adequately distinguished from eloquent cortex areas. Complications include intracranial hemorrhage, infections and increased intracranial pressure but lasting deficits or even death are rare (≤2 %). The outcome of invasive monitoring is inferior to non-invasive monitoring because of the higher degree of complexity of the cases; however, it is far superior to the seizure-free rates achieved by anticonvulsant drug treatment alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Alexopoulos AV, Kotagal P, Loddenkemper T, Hammel J, Bingaman WE (2006) Long-term results with vagus nerve stimulation in children with pharmacoresistant epilepsy. Seizure 15:491–503

    Article  PubMed  Google Scholar 

  2. Amar AP, Heck CN, Levy ML, Smith T, DeGiorgio CM, Oviedo S et al (1998) An institutional experience with cervical vagus nerve trunk stimulation for medically refractory epilepsy: rationale, technique, and outcome. Neurosurgery 43:1265–1280

    CAS  PubMed  Google Scholar 

  3. Andrade DM, Zumsteg D, Hamani C, Hodaie M, Sarkissian S, Lozano AM, Wennberg RA (2006) Long-term follow-up of patients with thalamic deep brain stimulation for epilepsy. Neurology 66:1571–1573

    Article  CAS  PubMed  Google Scholar 

  4. Awad IA, Nayel MH, Luders H (1991) Second operation after the failure of previous resection for epilepsy. Neurosurgery 28:510–518

    Article  CAS  PubMed  Google Scholar 

  5. Bauer S, Baier H, Baumgartner C, Bohlmann K, Fauser S, Graf W, Hillenbrand B, Hirsch M, Last C, Lerche H, Mayer T, Schulze-Bonhage A, Steinhoff BJ, Weber Y, Hartlep A, Rosenow F, Hamer HM (2016) Transcutaneous Vagus Nerve Stimulation (tVNS) for treatment of drug-resistant epilepsy: A randomized, double-blind clinical trial (cMPsE02). Brain Stimul. doi:10.1016/j.brs.2015.11.003

    Google Scholar 

  6. Bergey GK, Morrell MJ, Mizrahi EM et al (2015) Long-term treatment with responsive brain stimulation in adults with refractory partial seizures. Neurology 84:810–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bodin et al (2015) Responders to Vagus Nerve Stimulation(VNS) in refractory epilepsy have reduced interictal cortical synchronicity on scalp EEG. Epilepsy Res 113:98–103

    Article  PubMed  Google Scholar 

  8. Boon P, Vonck K, van Rijckevorsel K et al (2015) A prospective, multicenter study of cardiac-based seizure detection to activate vagus nerve stimulation. Seizure 32:52–61

    Article  PubMed  Google Scholar 

  9. Bulacio JC, Jehi L, Wong C, Gonzalez-Martinez J, Kotagal P, Nair D, Najm I, Bingaman W (2012) Long-term seizure outcome after resective surgery in patients evaluated with intracranial electrodes. Epilepsia 53:1722–1730

    Article  PubMed  Google Scholar 

  10. Burneo JG, Steven DA, McLachlan RS, Parrent AG (2006) Morbidity associated with the use of intracranial electrodes for epilepsy surgery. Can J Neurol Sci 33:223–227

    Article  PubMed  Google Scholar 

  11. Callaghan BC, Anand K, Hesdorffer D, Hauser WA, French JA (2007) Likelihood of seizure remission in an adult population with refractory epilepsy. Ann Neurol 62:382–389

    Article  PubMed  Google Scholar 

  12. Carrette E, Vonck K, De Herdt V, Van Dycke A, El Tahry R, Meurs A, Raedt R, Goossens L, Van Zandijcke M, Van Maele G, Thadani V, Wadman W, Van Roost D, Boon P (2010) Predictive factors for outcome of invasive video-EEG monitoring and subsequent resective surgery in patients with refractory epilepsy. Clin Neurol Neurosurg 112:118–126

    Article  PubMed  Google Scholar 

  13. Cook MJ, O’Brien TJ, Berkovic SF et al (2013) Prediction of seizure likelihood with a long-term, implanted implanted seizure advisory system in patients with drug-resistant epilepsy: a first-in-man study. Lancet 12:563–571

    Article  PubMed  Google Scholar 

  14. Donos C, Dümpelmann M, Schulze-Bonhage A (2015) Early Seizure detection Algorithm Based on Intracranial EEG and Random Forest Classification. Int J Neural Syst 25(5):1550023. doi:10.1142/S0129065715500239

    Article  PubMed  Google Scholar 

  15. del, Rydenhag B, Olsson I, Flink R, Kumlien E, Kallen K, Malmgren K (2013) Long-term outcomes of epilepsy surgery in Sweden: a national prospective and longitudinal study. Neurology 81:1244–1251

    Article  Google Scholar 

  16. El Tahry R, Hirsch M, Van Rijckevorsel K et al (2016) Early experiences with tachycardia-triggered vagus nerve stimulation using the AspireSR stimulator. Epileptic Disord 18(2):155–162

    PubMed  Google Scholar 

  17. Elliott RE, Morsi A, Tanweer O et al (2011) Efficacy of vagus nerve stimulation over time: review of 65 consecutive patients with treatment-resistant epilepsy treated with VNS >10 years. Epilepsy Behav 20:478–483

    Article  PubMed  Google Scholar 

  18. Fauser S, Schulze-Bonhage A (2006) Epileptogenicity of cortical dysplasia in temporal lobe dual pathology: an electrophysiological study with invasive recordings. Brain 129:82–95

    Article  PubMed  Google Scholar 

  19. Fauser S, Sisodiya SM, Martinian L, Thom M, Gumbinger C, Huppertz HJ, Hader C, Strobl K, Steinhoff BJ, Prinz M, Zentner J, Schulze-Bonhage A (2009) Multi-focal occurrence of cortical dysplasia in epilepsy patients. Brain 132:2079–2090

    Article  PubMed  Google Scholar 

  20. FDA http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/MedicalDevices/MedicalDevicesAdvisoryCommittee/NeurologicalDevicesPanel/UCM340258.pdf Zugegriffen: 28.6.2016

  21. FDA https://clinicaltrials.gov/ct2/show/results/NCT00101933?sect=Xb870156#outcome5 Zugegriffen: 28.6.2016

  22. Fisher R, Salanova V, Witt T et al (2010) Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia 51:899–908

    Article  PubMed  Google Scholar 

  23. Fisher RS, Uematsu S, Krauss GL, Cysyk BJ, McPherson R, Lesser RP, Gordon B, Schwerdt P, Rise M (1992) Placebo-controlled pilot study of centromedian thalamic stimulation in treatment of intractable seizures. Epilepsia 33:841–851

    Article  CAS  Google Scholar 

  24. Fisher RS (2012) Therapeutic devices for epilepsy. Ann Neurol 71:157–168

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ghaemi K, Elsharkawy AE, Schulz R, Hoppe M, Polster T, Pannek H, Ebner A (2010) Vagus nerve stimulation: outcome and predictors of seizure freedom in long-term follow-up. Seizure 19:264–268

    Article  PubMed  Google Scholar 

  26. Guenot M, Isnard J, Ryvlin P, Fischer C, Ostrowsky K, Mauguiere F, Sindou M (2001) Neurophysiological monitoring for epilepsy surgery: the Talairach SEEG method. StereoElectroEncephaloGraphy. Indications, results, complications and therapeutic applications in a series of 100 consecutive cases. Stereotact Funct Neurosurg 77:29–32

    Article  CAS  PubMed  Google Scholar 

  27. Hamer HM, Morris HH, Mascha EJ, Karafa MT, Bingaman WE, Bej MD, Burgess RC, Dinner DS, Foldvary NR, Hahn JF, Kotagal P, Najm I, Wyllie E, Luders HO (2002) Complications of invasive video-EEG monitoring with subdural grid electrodes. Neurology 58:97–103

    Article  CAS  PubMed  Google Scholar 

  28. Hamer HM, Morris HH (2001) Indication of subdural grid electrodes. In: Lüders HO, Comair YG (Hrsg) Epilepsy surgery, 2. Aufl. Lippincott Williams & Wilkins, Philadelphia, S 559–566

    Google Scholar 

  29. Hampel KG, Vatter H, Elger CE, Surges R (2015) Cardiac-based vagus nerve stimulation reduced seizure duration in a patient with refractory epilepsy. Seizure 26:81–85

    Article  PubMed  Google Scholar 

  30. Handforth A, DeGiorgio CM, Schachter SC et al (1998) Vagus nerve stimulation therapy for partial-onset seizures: a randomized active-control trial. Neurology 51:48–55

    Article  CAS  PubMed  Google Scholar 

  31. Heck CN, King-Stephens D, Massey AD, Nair DR, Jobst BC, Barkley GL et al (2014) Two-year seizure reduction in adults with medically intractable partial onset epilepsy treated with responsive neurostimulation: final results of the RNS System Pivotal trial. Epilepsia 55:432–441

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hedegard E, Bjellvi J, Edelvik A, Rydenhag B, Flink R, Malmgren K (2014) Complications to invasive epilepsy surgery workup with subdural and depth electrodes: a prospective population-based observational study. J Neurol Neurosurg Psychiatry 85:716–720

    Article  PubMed  Google Scholar 

  33. Hirsch M, Altenmüller DM, Schulze-Bonhage A (2015) Latencies from intracranial seizure onset to ictal tachycardia: A comparison to surface EEG patterns and other clinical signs. Epilepsia 56:1639–1647

    Article  PubMed  Google Scholar 

  34. Hirsch M, Schulze-Bonhage A (2016) Vagusnervstimulation in der Behandlung von Epilepsiepatienten. Aktuel Neurol. (im Druck)

  35. Holtkamp M, Sharan A, Sperling MR (2012) Intracranial EEG in predicting surgical outcome in frontal lobe epilepsy. Epilepsia 53:1739–1745

    Article  PubMed  Google Scholar 

  36. Jacobs J, LeVan P, Chander R, Hall J, Dubeau F, Gotman J (2008) Interictal high-frequency oscillations (80–500 Hz) are an indicator of seizure onset areas independent of spikes in the human epileptic brain. Epilepsia 49:1893–1907

    Article  PubMed  PubMed Central  Google Scholar 

  37. Jacobs J, Zijlmans M, Zelmann R, Chatillon CE, Hall J, Olivier A, Dubeau F, Gotman J (2010) High-frequency electroencephalographic oscillations correlate with outcome of epilepsy surgery. Ann Neurol 67:209–220

    Article  PubMed  PubMed Central  Google Scholar 

  38. Janszky J, Hoppe M, Behne F, Tuxhorn I, Pannek HW, Ebner A (2005) Vagus nerve stimulation: predictors of seizure freedom. J Neurol Neurosurg Psychiatry 76:384–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Johnston JM Jr., Mangano FT, Ojemann JG, Park TS, Trevathan E, Smyth MD (2006) Complications of invasive subdural electrode monitoring at St. Louis Children’s Hospital, 1994–2005. J Neurosurg 105:343–347

    PubMed  Google Scholar 

  40. Kahane P, Francoine S (2008) Stereoelectroencephalography. In: Lüder HO (Hrsg) Textbook of Epilepsy Surgery. Informa Healthcare, London, S 649–658

    Chapter  Google Scholar 

  41. Kerber K, Dümpelmann M, Schelter B, Van Le P, Korinthenberg R, Schulze-Bonhage A, Jacobs J (2014) Differentiation of specific ripple patterns helps to identify epileptogenic areas for surgical procedures. Clin Neurophysiol 125:1339–1345

    Article  PubMed  Google Scholar 

  42. Kim DW, Kim HK, Lee SK, Chu K, Chung CK (2010) Extent of neocortical resection and surgical outcome of epilepsy: intracranial EEG analysis. Epilepsia 51:1010–1017

    Article  PubMed  Google Scholar 

  43. Kwan P, Brodie MJ (2000) Early identification of refractory epilepsy. N Engl J Med 342:314–319

    Article  CAS  PubMed  Google Scholar 

  44. Leutmezer F, Schernthaner C, Lurger S, Pötzelberger K, Baumgartner C (2003) Electrocardiographic changes at the onset of epileptic seizures. Epilepsia 44:348–354

    Article  PubMed  Google Scholar 

  45. Loring DW, Kapur R, Meador KJ, Morrell MJ (2015) Differential neuropsychological outcomes following targeted responsive neurostimulation for partial-onset epilepsy. Epilepsia 56:1836–1844

    Article  PubMed  Google Scholar 

  46. Luciano AL, Shorvon SD (2007) Results of treatment changes in patients with apparently drug-resistant chronic epilepsy. Ann Neurol 62:375–381

    Article  CAS  PubMed  Google Scholar 

  47. Luders H, Awad I, Burgess R, Wyllie E, Van Ness P (1992) Subdural electrodes in the presurgical evaluation for surgery of epilepsy. Epilepsy Res Suppl 5:147–156

    CAS  PubMed  Google Scholar 

  48. Meador KJ, Kapur R, Loring DW, Kanner AM, Morrell MJ (2015) Quality of life andmood in patients withmedically intractable epilepsy treated with targeted responsive neurostimulation. Epilepsy Behav 45:242–247

    Article  PubMed  Google Scholar 

  49. Meisel C, Schulze-Bonhage A, Freestone D, Cook MJ, Achermann P, Plenz D (2015) Intrinsic excitability measures track antiepileptic drug action and uncover increasing/decreasing excitability over the wake/sleep cycle. Proc Natl Acad Sci U S A 112:14694–14699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Morrell MJ (2011) Responsive cortical stimulation for the treatment of medically intractable partial epilepsy. Neurology 77:1295–1304

    Article  PubMed  Google Scholar 

  51. Morris GL, Gloss D, Buchhalter J, Mack KJ, Nickels K, Harden C (2013) Evidence-based guideline update: vagus nerve stimulation for the treatment of epilepsy: Report of the guideline development subcommittee of the american academy of neurology. Neurology 81D16:1453–1459

    Article  Google Scholar 

  52. Morris GL, Mueller WM (1999) Long-term treatment with vagus nerve stimulation in patients with refractory epilepsy. The Vagus Nerve Stimulation Study Group E01–E05. Neurology 53:1731–1735

    Article  PubMed  Google Scholar 

  53. Mullin JP, Sexton D, Al-Omar S, Gonzalez-Martinez J (2016) Outcomes of subdural grid electrode monitoring in the SEEG era. World Neurosurg. doi:10.1016/j.wneu.2016.02.034

    Google Scholar 

  54. Mullin JP, Shriver M, Alomar S, Najm I, Bulacio J, Chauvel P, Gonzalez-Martinez J (2016) Is SEEG safe? A systematic review and meta-analysis of stereo-electroencephalography-related complications. Epilepsia 57:386–401

    Article  PubMed  Google Scholar 

  55. Onal C, Otsubo H, Araki T, Chitoku S, Ochi A, Weiss S, Elliott I, Snead OC 3rd, Rutka JT, Logan W (2003) Complications of invasive subdural grid monitoring in children with epilepsy. J Neurosurg 98:1017–1026

    Article  PubMed  Google Scholar 

  56. Palmini A, Gambardella A, Andermann F, Dubeau F, Da Costa JC, Olivier A, Tampieri D, Gloor P, Quesney F, Andermann E (1995) Intrinsic epileptogenicity of human dysplastic cortex as suggested by corticography and surgical results. Ann Neurol 37:476–487

    Article  CAS  PubMed  Google Scholar 

  57. Penfield W, Boldrey E (1937) Somatic motor and sensory representaion in the cerbral cortex of man as studied by electrical stimulation. Brain 60:389–443

    Article  Google Scholar 

  58. Reif PS, Strzelczyk A, Rosenow F (2016) The history of invasive EEG evaluation in epilepsy patients. Seizure. doi:10.1016/j.seizure.2016.04.006

    PubMed  Google Scholar 

  59. Rosenow F, Luders H (2001) Presurgical evaluation of epilepsy. Brain 124:1683–1700

    Article  CAS  PubMed  Google Scholar 

  60. Ryvlin P, Gilliam FG, Nguyen DK, Colicchio G, Iudice A, Tinuper P, Zamponi N, Aguglia U, Wagner L, Minotti L, Stefan H, Boon P, Sadler M, Benna P, Raman P, Perucca E (2014) The long-term effect of vagus nerve stimulation on quality of life in patients with pharmacoresistant focal epilepsy: the PuLsE (Open Prospective Randomized Long-term Effectiveness) trial. Epilepsia 55:893–900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Salanova V, Witt T, Worth R et al (2015) Long-term efficacy and safety of thalamic stimulation for drug-resistant partial epilepsy. Neurology 84:1017–1025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Schulze-Bonhage A, Coenen V (2013) Epilepsiebehandlung – Periphere und zentrale Stimulationsverfahren. Nervenarzt 84:517–529

    Article  CAS  PubMed  Google Scholar 

  63. Schulze-Bonhage A, Zentner J (2014) Prächirurgische Epilepsiediagnostik und operative Epilepsietherapie. Dtsch Arztebl Int 111:313–319

    PubMed  PubMed Central  Google Scholar 

  64. Schulze-Bonhage A (2009) Tiefe Hirnstimulation als neuer Therapieansatz bei Epilepsien. Dtsch Ärztebl 106:407–412

    Google Scholar 

  65. Semah F, Picot MC, Adam C, Broglin D, Arzimanoglou A, Bazin B, Cavalcanti D, Baulac M (1998) Is the underlying cause of epilepsy a major prognostic factor for recurrence? Neurology 51:1256–1262

    Article  CAS  PubMed  Google Scholar 

  66. Serletis D, Bulacio J, Bingaman W, Najm I, Gonzalez-Martinez J (2014) The stereotactic approach for mapping epileptic networks: a prospective study of 200 patients. J Neurosurg 121:1239–1246

    Article  PubMed  Google Scholar 

  67. Talairach J, Bancaud J, Bonis A, Szikla G, Tournoux P (1962) Functional stereotaxic exploration of epilepsy. Confin Neurol 22:328–331

    Article  CAS  PubMed  Google Scholar 

  68. Talairach J, Bancaud J, Bonis A, Tournoux P, Szikla G, Morel P (1961) Functional stereotaxic investigations in epilepsy. Methodological remarks concerning a case. Rev Neurol (Paris) 105:119–130

    CAS  Google Scholar 

  69. Talairach J, Bancaud J (1966) The supplementary motor area in man: anatomical-functional findings by stereo-electroencephalography in epilepsy. Int J Neurol 5:330

    Google Scholar 

  70. The Vagus Nerve Stimulation Study Group (1995) A randomized controlled trial of chronic vagus nerve stimulation for treatment of medically intractable seizures. The Vagus Nerve Stimulation Study Group. Neurology 45:224–230

    Article  Google Scholar 

  71. Vale FL, Pollock G, Dionisio J, Benbadis SR, Tatum WO (2013) Outcome and complications of chronically implanted subdural electrodes for the treatment of medically resistant epilepsy. Clin Neurol Neurosurg 115:985–990

    Article  CAS  PubMed  Google Scholar 

  72. Van Gompel JJ, Worrell GA, Bell ML, Patrick TA, Cascino GD, Raffel C, Marsh WR, Meyer FB (2008) Intracranial electroencephalography with subdural grid electrodes: techniques, complications, and outcomes. Neurosurgery 63(505):498–505

    Article  PubMed  Google Scholar 

  73. Waziri A, Claassen J, Stuart RM, Arif H, Schmidt JM, Mayer SA, Badjatia N, Kull LL, Connolly ES, Emerson RG, Hirsch LJ (2009) Intracortical electroencephalography in acute brain injury. Ann Neurol 66(3):366–377

    Article  PubMed  Google Scholar 

  74. Wellmer J, von der Groeben F, Klarmann U, Weber C, Elger CE, Urbach H, Clusmann H, von Lehe M (2012) Risks and benefits of invasive epilepsy surgery workup with implanted subdural and depth electrodes. Epilepsia 53:1322–1332

    Article  PubMed  Google Scholar 

  75. Wetjen NM, Marsh WR, Meyer FB, Cascino GD, So E, Britton JW, Stead SM, Worrell GA (2009) Intracranial electroencephalography seizure onset patterns and surgical outcomes in nonlesional extratemporal epilepsy. J Neurosurg 110:1147–1152

    Article  PubMed  PubMed Central  Google Scholar 

  76. Wiggins GC, Elisevich K, Smith BJ (1999) Morbidity and infection in combined subdural grid and strip electrode investigation for intractable epilepsy. Epilepsy Res 37:73–80

    Article  CAS  PubMed  Google Scholar 

  77. Yang PF, Zhang HJ, Pei JS, Tian J, Lin Q, Mei Z, Zhong ZH, Jia YZ, Chen ZQ, Zheng ZY (2014) Intracranial electroencephalography with subdural and/or depth electrodes in children with epilepsy: techniques, complications, and outcomes. Epilepsy Res 108:1662–1670

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Schulze-Bonhage.

Ethics declarations

Interessenkonflikt

M. Hagge gibt an, dass kein Interessenkonflikt besteht. A. Schulze-Bonhage gibt an, Honorare für Referate oder Beratung seitens den Firmen Bial, Cerbomed, Cyberonics, Desitin, Eisai, Medtronic, Precisis und UCB erhalten zu haben. H. M. Hamer hat Honorare für Referate oder Manuskripte und/oder Unterstützungen für Fortbildungsveranstaltungen erhalten von Ad-Tech, Desitin, Eisai, GSK, IQWiG, Hexal, Ingelheim Boehringer, Nihon Kohden, Novartis, Pfizer und UCB Pharma sowie von den Universitäten Essen, Hamburg, Hannover, Marburg, München und Saarbrücken. Darüber hinaus hat er für Beratungen der Firmen Cerbomed, Desitin, Eisai, GSK, Pfizer und UCB Pharma Honorare erhalten. Er erhielt Unterstützung für Forschungsvorhaben von Desitin, Janssen-Cilag, GSK und UCB Pharma. M. Hirsch hat Honorare für Referate von Fa. USC B erhalten.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Additional information

A. Schulze-Bonhage und H. M. Hamer haben zu gleichen Teilen zu der Arbeit beigetragen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schulze-Bonhage, A., Hamer, H.M., Hirsch, M. et al. Invasive Stimulationsverfahren und EEG-Diagnostik bei Epilepsien. Nervenarzt 87, 829–837 (2016). https://doi.org/10.1007/s00115-016-0159-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-016-0159-0

Schlüsselwörter

Keywords

Navigation