Skip to main content

Advertisement

Log in

Contaminant geochemistry—a new perspective

  • REVIEW
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

To date, the field of contaminant geochemistry—which deals with the study of chemical interactions in soil and aquifer environments—has focused mainly on pollutant toxicity, retention, persistence, and transport and/or on remediation of contaminated sites. Alteration of subsurface physicochemical properties by anthropogenic chemicals, which reach the land surface as a result of human activity, has been essentially neglected. Contaminant-induced changes in subsurface properties are usually considered as deviations from a normal geological environment, which will disappear under natural attenuation or following remediation procedures. However, contaminants may in many cases cause irreversible changes in both structure and properties of the soil–subsurface geosystem between the land surface and groundwater. The time scales associated with these changes are on a “human time scale”, far shorter than geological scales relevant for geochemical processes. In this review, we draw attention to a new perspective of contaminant geochemistry, namely, irreversible changes in the subsurface as a result of anthropogenic chemical pollution. We begin by briefly reviewing processes governing contaminant–subsurface interactions. We then survey how chemical contamination causes irreversible changes in subsurface structure and properties. The magnitude of the anthropogenic impact on the soil and subsurface is linked directly to the amounts of chemical contaminants applied and/or disposed of on the land surface. This particular aspect is of major importance when examining the effects of humans on global environmental changes. Consideration of these phenomena opens new perspectives for the field of contaminant geochemistry and for research of human impacts on the soil and subsurface regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abrajano TA, Yan B, O’Malley V (2005) High molecular weight petrogenic and pyrogenic hydrocarbons in aquatic environments. In: Drever JI (ed) Surface and ground water, weathering and soils. Treatise on Geochemistry 5:475–509

  • Aggarwal V, Li H, Boyd SA, Teppen BJ (2006) Enhanced sorption of trichloroethane by smectite clay exchanged with Cs. Environ Sci Technol 40:894–899

    CAS  PubMed  Google Scholar 

  • Amundson R, Richter DD, Humphreys GS, Jobbagy EG, Gaillardet J (2007) The coupling between biota and Earth materials in the critical zone. Elements 3:327–332

    CAS  Google Scholar 

  • Appelo CAJ, Postma D (1993) Geochemistry, groundwater and pollution. Balkema, Rotterdam, p 329

    Google Scholar 

  • Appleyard S, Wong S, Willis-Jones B, Angeloni J, Watkins R (2004) Groundwater acidification caused by urban development in Perth, western Australia: source, distribution and implication for management. Aust J of Soil Res 42:579–585

    CAS  Google Scholar 

  • Armstrong DE, Chester G, Harris RF (1967) Atrazine hydrolysis in soil. Soil Sci Soc Am Proc 31:61–67

    CAS  Google Scholar 

  • Ayers RS, Westcot DW (1985) Water quality for agriculture FAO, Rome M-56, pp. 174

  • Barriusso E, Koskinen WC, Sorenson B (1992) Modification of atrazine desorption during field incubation experiments. Sci Total Environ 123(124):333–344

    Google Scholar 

  • Beragaoui L, Lambbert JF, Prost R (2005) Cesium adsorption on soil clay: macrodcopic and spectroscopic measurements. Appl Clay Sci 29:23–29

    Google Scholar 

  • Berkowitz B, Dror I, Yaron B (2008) Contaminant geochemistry: interactions and transport in the subsurface environment. Springer, Heidelberg, p 412

    Google Scholar 

  • Blanchet PF, St-George A (1982) Hydrolysis of chloropyrifos and chloropyrifos-methyl in the presence of copper. Pestic Sci 13:85–91

    CAS  Google Scholar 

  • Boyd GE, Adamson AW, Meyers LS (1947) The exchange adsorption of ions from aqueous solutions by organic zeolites. J Am Chem Soc 69:2836–2848

    CAS  PubMed  Google Scholar 

  • Brantley SL (2008) Understanding soil time. Science 321:1454–1455

    CAS  PubMed  Google Scholar 

  • Brantley SL, Goldhaber MB, Vala Ragnarsdottir K (2007) Crossing disciplines and scales to understand the critical zone. Elements 3:307–314

    CAS  Google Scholar 

  • Bresler E, McNeal BL, Carter DL (1982) Saline and sodic soils. Springer, Berlin 237

    Google Scholar 

  • Burchil SM, Hayes MHB, Greenland DJ (1981) Adsorption. In: Greenland DJ, Hayes MHB (eds) The chemistry of soil processes. Wiley, New York, pp 224–400

    Google Scholar 

  • Calvet R (1989) Adsorption of organic chemicals in soils. Environ Health Perspect 83:145–177

    CAS  PubMed  Google Scholar 

  • Chadwick OA, Chorover J (2001) The chemistry of pedogenetic thresholds. Geoderma 100:321–353

    CAS  Google Scholar 

  • Chapelle FH (2005) Surface and ground water, weathering, and soils. In: Drever JI (ed) Geochemistry of ground water. Treatise of Geochemistry 5:25–449

  • Chaussidon J, Calvet R (1965) Evolution of amine cations adsorbed on montmorillonite. J Phys Chem 69:265–268

    Google Scholar 

  • Chaussidon J, Calvet R (1974) Catalytic reactions on clay surfaces. In: Coulton F, Albaky NY, Konle F (eds) Environ Quality and Safety 3, Stuttgart

  • Christensen JN, Dressel PE, Conrad MA, Maher K, Depalo DJ (2004) Identifying the sources of subsurface contamination at the Hanford Site in Washington using high precision uranium isotopic measurements. Environ Sci Technol 390:3330–3337

    Google Scholar 

  • Crutzen PJ (2002) Geology of mankind. Nature 415:23

    CAS  PubMed  Google Scholar 

  • Daintith J (1990) A concise dictionary of chemistry. Oxford University Press, Oxford

    Google Scholar 

  • DeLapp RC, LeBoeuf EJ (2004) Thermal analysis of whole soils and sediment. J Environ Quality 33:330–337

    CAS  Google Scholar 

  • Delle Site A (2001) Factors affecting sorption of organic compounds in natural sorbent–water systems and sorption coefficients for selected pesticides: a review. J Phys Chem Ref Data 30:187–439

    CAS  Google Scholar 

  • Di Mayo C (1996) Exposure of bentonite to salt solution: osmotic and mechanical effects. Geotechnique 46:695–707

    Article  Google Scholar 

  • Dokucheaev VV (1860) Russian Chernozen. In: Selected Works of VV Dokuceaev vol 1 Moscow 1948—English translation, Jerusalem

  • Dror I, Berkowitz B, Gorelick SM (2004) Effects of air injection on flow through porous media: observations and analyses of laboratory-scale processes. Water Resour Res 40:W09203. doi:10.1029/2003WR002960

    Google Scholar 

  • Fu G, Kan AT, Thompson MB (1994) Adsorption and desorption hysteresis of PAHs in surface sediments. Environ Toxic Chem 13:1559–1567

    CAS  Google Scholar 

  • Goldenberg LC, Magaritz M, Mandel S (1983) Experimental investigation on irreversible changes of hydraulic conductivity on the seawater–freshwater interface in coastal aquifers. Water Resour Res 19:77–85

    Google Scholar 

  • Goldenberg LC, Magaritz M, Amiel AJ, Mandel S (1984) Changes in hydraulic conductivity of laboratory sand clay mixtures caused by a seawater fresh-water interface. J Hydrol 70:329–336

    CAS  Google Scholar 

  • Greenland DJ, Hayes MHB (eds) (1981) The chemistry of soil processes. Wiley, New York

    Google Scholar 

  • Hall JE, Coker EG (1983) Some effects of sewage sludge on soil physical conditions and plant grows. In: Catroux G, L’Hermite P, Suess E (eds) The influence of sewage sludge application on physical and biological properties of soils. Reidel, Boston, pp 43–61

    Google Scholar 

  • Hansen BK, Postma D (1995) Acidification, buffering and salt effect in the unsaturated zone of a sandy aquifer Klosterhede, Danemark. Water Resour Res 31:2795–2810

    CAS  Google Scholar 

  • Hasset IJ, Banwart WL (1997) The sorption of non polar organics by soil and sediments. In: Sawheney BL, Brown K (eds) Reactions and movement of organic chemicals in soils. Soil Sci Soc Amer Spec Pub 22:31–45, Madison

  • Hayes MHB, Mingelgrin U (1991) Interactions between small organic molecules and soil colloidal constituents. In: Bolt GH, De Boodt MF, Hayes MHB, McBride MB (eds) Interactions at the soil colloids–solution interface NATO ASI Series 190:324–401, Kluwer, Dordrecht

  • Hedley CB, Yuan G, Theng BKGl (2007) Thermal analysis of montmorillonites modified with quaternary phosphonium and ammonium surfactants. Appl Clay Sci 35:180–188

    CAS  Google Scholar 

  • Hilgard EW (1860) Report on the geology and agriculture of the State of Mississippi, E. Barksdale State Printer, Jackson

    Google Scholar 

  • Hinderer M, Einsele G (1997) Groundwater acidification in Triassic sandstones: prediction with MAGIC modeling. Int J Earth Sci 86:372–388

    CAS  Google Scholar 

  • Hu C, Zhang TC, Huang YH, Dahab MF, Surampalli R (2005) Effects of long-term wastewater application on chemical properties and phosphorus adsorption capacity in soils of a wastewater land treatment system. Environ Sci Technol 39:7240–7245

    CAS  PubMed  Google Scholar 

  • Huang OM (2000) Abiotic catalysis. In: Summer ME (ed) Handbook of soil science. CRC, Boca Raton, pp 303–327

    Google Scholar 

  • Huang W, Peng P, Yu Z, Fu J (2003) Effects of organic matter heterogeneity on sorption and desorption of organic contaminants by soils and sediments. Appl Geochem 18:955–972

    CAS  Google Scholar 

  • Hundal LS, Thompson ML (2006) Soil aggregation as a source of variation in sorption isotherms of hydrophobic organic compounds. Soil Sci 171:355–363

    CAS  Google Scholar 

  • Jacks G, Knutsson G, Maxe L, Flykner A (1984) Effect of acid rain on soil and groundwater in Sweden. In: Yaron B, Dagan G, Goldshmid J (eds) Pollutants in porous media. Springer, Heidelberg, pp 94–114

    Google Scholar 

  • Jenney H (1941) Factors of soil formation. McGraw Hill, New York

    Google Scholar 

  • Jenny H (1961) Hilgard and the birth of modern soil science. Collana Della Revista Agrochemica, Pisa

    Google Scholar 

  • Kalbitz K, Schwesing D, Rethemeyer J (2005) Stabilization of dissolved organic matter by sorption to mineral soil. Soil Biol Biochem 37:1319–1331

    CAS  Google Scholar 

  • Kan AT, Fu G, Hunter MA, Thompson MB (1997) Irreversible adsorption of naphthalene and tetrachlorpbiphenyl to Lula and Surrogate sediments. Environ Sci Technol 31:2178–2186

    Google Scholar 

  • Kau PMH, Smith DW, Binning P (1997) Fluoride retention by kaolin clay. J Contam Hydrol 28:267–288

    CAS  Google Scholar 

  • Keiluweit M, Kleber M (2009) Molecular-level interactions in soils and sediments: the role of aromatic pi-systems. Environ Sci Tecnol 43:677–684

    Google Scholar 

  • Khwaja AR, Bloom PR, Brezonik PL (2006) binding constants of divalent mercury (Hg2+) in soil humic acids and soil organic matter. Environ Sci Technol 40:844–849

    CAS  PubMed  Google Scholar 

  • Kjoller C, Postma D, Larsen F (2004) Groundwater acidification and the mobilization of trace metals in a sandy aquifer. Environ Sci Technol 38:2829–2835

    CAS  PubMed  Google Scholar 

  • Kristiansen R (1981) Sand-filter trenches for purification of septic tank effluent: I. The clogging mechanism and soil physical environment. J Environ Qual 10:353–357

    CAS  Google Scholar 

  • Krumhansl JL, Brady PV, Anderson HL (2001) Reactive barriers for 137Cs retention. J Cont Hydrol 47:233–240

    CAS  Google Scholar 

  • Laird DA, Shang C, Thompson MJ (1995) Hysteresis in crystalline swelling of smectite. J Coll Int Sci 171:240–245

    CAS  Google Scholar 

  • LeBoeuf EJ, Weber WJ (2000a) Macromolecular characteristics of natural organic matter 1. Insights from glass transition and enthalpic relaxation behavior. Environ Sci Technol 34:3623–3631

    CAS  Google Scholar 

  • LeBoeuf EJ, Weber WJ (2000b) Macromolecular characteristics of natural organic matter 2. Sorption and desorption behavior. Environ Sci Technol 34:3632–3640

    CAS  Google Scholar 

  • Lee JF, Hsu MH, Lee CK (2005) effects of soil properties on surfactant adsorption. J Chin Inst Eng 28:375–379

    Google Scholar 

  • Lehman J, Kiniangi J, Solomon D (2007) Organic matter stabilization in soil microaggregates. Biogeochemistry 85:45–57

    Google Scholar 

  • Li A, Andren AW, Yalkowsky SH (1996) Choosing a cosolvent: solubilization of naphthalene and cosolvent properties. Environ Toxicol Chem 15:2233–2239

    CAS  Google Scholar 

  • Lu Y, Pignatello JJ (2002) Demonstration of the “conditioning effect” in soil organic matter in support of a pore deformation mechanism for sorption hysteresis. Environ Sci Technol 36:4533–4561

    Google Scholar 

  • Maqueda C, Undabeytia T, Morillo E (1998) Retention and release of copper on montmorillonite as affected by the presence of pesticides. J Agric Food Chem 46:1200–1204

    CAS  Google Scholar 

  • Mark JE, Eisenberg A, Graesseley WW, Manelkern L, Samulski ET, Koenig Gl, Wignall GD (1993) Physical properties of polymers, 2nd ed. Am Chem Soc, Washington

  • Markewitz D, Richter DD, Allen HL, Urrego JB (1998) Three decades of observed soil acidification at the Calhoun Experimental Forest: has acid rain made a difference? Soil Sci Soc Am J 62:1428–1439

    CAS  Google Scholar 

  • McNeal BL, Coleman NT (1966) Effect of solution composition on soil hydraulic conductivity. Soil Sci Soc Am Proc 30:308–312

    Article  CAS  Google Scholar 

  • Metzger L, Robert M (1985) A scanning electron microscopy study of the interactions between sludge organic components and clay particles. Geoderma 35:159–167

    CAS  Google Scholar 

  • Metzger L, Yaron B (1987) Influence of sludge organic matter on soil physical properties. Adv Soil Sci 7:141–173

    Google Scholar 

  • Metzger L, Levanon DL, Mingelgrin U (1987) The effect of sewage sludge on soil structural stability-microbiological aspects. Soil Sci Soc Am J 51:346–351

    Article  Google Scholar 

  • Mikutta R, Mikutta C, Kalbitz K (2007) Biodegradation of forest floor organic matter bound to minerals via different binding mechanisms. Geochemica et Cosmochimica Acta 71:2569–2590

    Article  Google Scholar 

  • Millero FJ (1996) Chemical oceanography, 2nd edn. CRC, Boca Raton

    Google Scholar 

  • Mills AC, Biggar JW (1969) Solubility-temperature effect on the adsorption of gamma and beta-BHC from aqueous and hexane solutions by soils materials. Soil Sci Soc Am Proc 33:210–216

    Article  CAS  Google Scholar 

  • Mingelgrin U, Prost R (1989) Surface interaction of toxic organic chemicals with minerals. In: Gerstl Z, Chen Y, Mingelgrin U, Yaron B (eds) Toxic organic chemicals in porous media. Springer, Berlin, pp 91–136

    Google Scholar 

  • Moikutta R, Schauman GE, Gildemeiter D, Boneville S, Kramer MG, Mortland M (1970) Clay–organic complexes and interactions. Adv Agron 22:75–117

    Google Scholar 

  • Mortland M, Raman KV (1967) Catalytic hydrolysis of some organophosphate pesticides by copper. J Agric Food Chem 15:163–167

    CAS  Google Scholar 

  • Murray KS, Rogers DT, Kaufman MM (2006) Dissolved heavy metals in shallow groundwater in southeastern Michigan urban watershed. J Am Water Resour Assoc 42:777–792

    CAS  Google Scholar 

  • Nachtegaal M, Sparks DL (2003) Nickel sequestration in a kaolinite–humic acid complex. Environ Sci Technol 37:529–534

    CAS  PubMed  Google Scholar 

  • Noriish K (1954) The swelling of montmorillonite. Discuss Faraday Soc 18:120

    Google Scholar 

  • Nye PH, Tinker PB (1977) Solute movement in the soil-root area. Oxford, UK

    Google Scholar 

  • Ouhadi VR, Yong RN, Sedighi M (2006) Influence of heavy metal contaminants at variable pH regimes on rheological behaviour of bentonite. Appl Clay Sci 32:217–231

    CAS  Google Scholar 

  • Piccolo A, Nardi S, Concheri G (1996) Macromolecular changes of humic substances induced by interaction with organic acids. Euro J of Soil Science 47:319–328

    CAS  Google Scholar 

  • Purdue EM, Wolfe NL (1983) Prediction of buffer catalysis in field and laboratory studies. Environ Sci Technol 17:635–642

    Google Scholar 

  • Quirk JP (1968) Particle interaction and soil swelling. Isr J Chem 6:213–234

    CAS  Google Scholar 

  • Rakhsandehroo GR, Wallace RB, Boyd SA, Voice TC (1998) Hydraulic characteristics of organomodified soils for use in sorptive zone applications. Soil Sci Soc Am J 62:5–12

    Article  Google Scholar 

  • Richter DB Jr (2007) Humanity’s transformation of Earth’s soil: pedology’s new frontier. Soil Sci 172:957–967

    CAS  Google Scholar 

  • Russel JD, Cruz M, White JL (1968) The adsorption of 3-aminitriazole by montmorillonite. J Agri Food Chem 16:21–24

    Google Scholar 

  • Saltzman S, Yaron B (eds) (1986) Pesticides in soils. Van Nostrand Reinhold, New York

    Google Scholar 

  • Sander M, Lu YF, Pignatello JJ (2006) Conditioning-annealing studies of studies of natural organic matter solids linking irreversible sorption to irreversible structural expansion. Environ Sci Technol 40:170–174

    CAS  PubMed  Google Scholar 

  • Sauve S, Parker DR (2005) Chemical speciation of trace elements in soil solution. In: Tabatabai MA, Sparks DL (eds) Chemical processes in soils. Soil Sci Soc Am Book Series No 8, 721, Madison Wisconsin USA

  • Schwarzenbach RP, Gshwend PM, Imboden DM (2003) Environmental organic chemistry, 2nd edn. Wiley-Interscience, New York

    Google Scholar 

  • Senesi M, Chen Y (1989) Interaction of toxic organic chemicals with humic substances. In: Gerstl Z, Chen Y, Mingelgrin U, Yaron B (eds) Toxic organic chemicals in porous media. Springer, Berlin, pp 37–91

    Google Scholar 

  • Sheinberg I (1985) The effect of exchangeable sodium and electrolyte concentration on crust formation. Adv Soil Sci 1:101–112

    Google Scholar 

  • Sheinberg I (1992) Chemical and mineralogical components of crust. In: Sumner ME, Stewart BA (eds) Soil crusting. Advances in Soil Science Lewis, London, pp 39–53

    Google Scholar 

  • Simonson RW (1951) Outline of a generalized theory of soil genesis. Soil Sci Soc Am Proc 23:152–156

    Article  Google Scholar 

  • Sparks DL (1986) Soil physical chemistry. CRC, Boca Raton

    Google Scholar 

  • Sposito G (1984) The surface chemistry of soils. Oxford University Press, Oxford

    Google Scholar 

  • Sposito G (1989) The chemistry of soils. Oxford University Press, New York

    Google Scholar 

  • Sposito G, Prost R (1982) Structure of water adsorption on smectites. Chem Rev 82:553–573

    CAS  Google Scholar 

  • Stevenson FJ (1982) Humus chemistry. Wiley, New York

    Google Scholar 

  • Stillinger FH (1980) Water revisited. Science 209:451–453

    CAS  PubMed  Google Scholar 

  • Suzuki S, Prayongphan S, Ichihawa Y, Chae BG (2005) In situ observation of the swelling of bentonite aggregates in NaCl solution. Appl Clay Sci 29:89–98

    CAS  Google Scholar 

  • Suzuki S, Sazarashi M, Akimoto T, Haginuma M, Suzuki K (2007) A study of the mineralogical alteration of bentonite in saline water. Appl Clay Sci 31:190–198

    Google Scholar 

  • Theng BKG (1974) The chemistry of clay–organic reactions. Adam Hilger, London

    Google Scholar 

  • Thompson HA, Parks GA, Brown GE (1999) Ambient-temperature synthesis, evolution, and characterization of cobalt–aluminum hydrotalcite like solids. Clay Clay Miner 47:425–438

    CAS  Google Scholar 

  • Tsai WT, Lai CW, Hsien KJ (2003) Effect of particle seize of activated clay on the adsorption of paraquat from aqueous solution. J Colloid Interface Sci 263:29–34

    CAS  PubMed  Google Scholar 

  • Undabeytia T, Morillo E, Ramos AB, Maqueda C (2002) Mutual influence of Cu and a cationic herbicide on their adsorption–desorption processes on two selected soils. Water, Air Soil Poll 137:81–94

    CAS  Google Scholar 

  • Van Olphen H (1965) An introduction to clay colloid chemistry, 2nd edn. Wiley, New York

    Google Scholar 

  • Vinten AJA, Mingelgrin U, Yaron B (1983) The effect of suspended solids in waste water conductivity. II Vertical distribution of suspended particles. Soil Sci Soc Am J 47:408–412

    Article  Google Scholar 

  • Wang Z, Fingas M, Blenkinsopp S, Landriault M, Sigouin L, Fought J, Semple K, Westlake SWS (1998) Comparison of oil composition changes due to biodegradation and physical weathering in different oils. J Chromatogr A809:89–107

    Google Scholar 

  • Weber WJ, Huang W, Yu H (1998) Hysteresis in the sorption and desorption of hydrophobic organic contaminants by soils and sediments 2. Effect of soil organic matter heterogeneity. J Cont Hydrol 31:149–165

    CAS  Google Scholar 

  • Wei QR, Lowery B, Peterson AE (1985) Effect of sludge application on physical properties of a silty clay soil. J Environ Quality 14:178–180

    Article  Google Scholar 

  • Wolfe NL (1989) Abiotic transformation of toxic organic chemicals in liquid phase and sediments. In: Gerstl Z, Chen Y, Mingelgrin U, Yaron B (eds) Toxic organic chemicals in porous media. Springer, Heidelberg, pp 136–148

    Google Scholar 

  • Wolfe NL, Mingelgrin U, Miller GC (1990) Abiotic transformation in water sediment and soils. In Cheng HH (ed) Pesticides in soil environment, Soil Sci Soc Am Book Series no 2, pp. 104–169, Madison

  • Xu SH, Boyd SA (1994) Cation exchange chemistry of hexadecyltrimethylammonium in a sunsoil containing vermiculite. Soil Sci Soc Am J 58:1382–1391

    Article  CAS  Google Scholar 

  • Xu D, Xiang Z, Wang X (2008) Adsorption and desorption of Ni2+ on Na-montmorillonite: V. Effect of pH, ionic strength, fulvic acid, humic acid and additional sequences. Appl Clay Sci 39:133–141

    CAS  Google Scholar 

  • Yaalon DH (1971) Soil-forming processes in space and time. In: Yaalon DH (ed) Paleopedology—origin, nature and dating of paleosols. Israel Univ Press, Jerusalem, pp 29–39

    Google Scholar 

  • Yaalon DH, Yaron B (1966) Framework for man-made changes—an outline of metapedogenesis. Soil Sci 102:272–278

    Article  Google Scholar 

  • Yamane VK, Green RE (1972) Adsorption of ametryne and atrazine on an oxisol, montmorillonite and charcoal in relation to pH and solubility effect. Soil Sci 125:412–417

    Google Scholar 

  • Yaron B (1978) Organophosphorus pesticides–clay interactions. Soil Sci 125:412–417

    Google Scholar 

  • Yaron B, Thomas GW (1968) Soil hydraulic conductivity as affected by sodic water. Water Resour Res 4:545–552

    CAS  Google Scholar 

  • Yaron B, Saltzman S (1978) Soil–parathion surface interactions. Residue Rev 69:1–34

    CAS  Google Scholar 

  • Yaron B, Frenkel H (1994) Water suitability for agriculture. In: Tanji KK, Yaron B (eds) Management of water use in agriculture. Springer, Heidelberg, pp 25–47

  • Yaron B, Calvet R, Prost R (1996) Soil pollution—processes and dynamics. Springer, Heidelberg

    Google Scholar 

  • Yaron B, Dror I, Berkowitz B (2008) Contaminant-induced irreversible changes in properties of the soil–vadose–aquifer zone: an overview. Chemosphere 71:1409–1421

    CAS  PubMed  Google Scholar 

  • Zhang Y, Zhu D, Yu H (2008) Sorption of aromatic compounds to clay mineral and model humic substance–clay complex: effects of solute structure and exchangeable cation. J Environ Qual 37:817–823

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Patrick V. Brady and a second anonymous reviewer for constructive review comments. The financial support of the Israel Ministry of Science and Technology is gratefully acknowledged. B.B. holds the Sam Zuckerberg Professorial Chair.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ishai Dror.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yaron, B., Dror, I. & Berkowitz, B. Contaminant geochemistry—a new perspective. Naturwissenschaften 97, 1–17 (2010). https://doi.org/10.1007/s00114-009-0592-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-009-0592-z

Keywords

Navigation