Skip to main content

Advertisement

Log in

The KISS1 metastasis suppressor appears to reverse the Warburg effect by shifting from glycolysis to mitochondrial beta-oxidation

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The shift by cancer cells toward aerobic glycolysis (Warburg effect) confers selective advantages by utilizing nutrients (e.g., lipids, amino acids, and nucleotides) to build biomass. Lipogenesis is generally enhanced, and its inhibition diminishes proliferation and survival. Re-expression of the metastasis suppressor KISS1 in human melanoma cells results in greater mitochondrial biogenesis, inhibition of glycolysis, utilization of beta-oxidation to provide energy, elevated oxidation of exogenous fatty acids, and increased expression of early-phase lipogenesis genes at both mRNA and protein levels. Correspondingly, the energy sensor AMPKβ is phosphorylated, resulting in inhibitory phosphorylation of acetyl-CoA carboxylase (ACC), which is linked to enhanced beta-oxidation. Furthermore, PGC1α is required for KISS1-mediated phosphorylation of ACC and metastasis suppression. Collectively, these data further support the linkages between macromolecular metabolism and metastasis.

Key messages

• KISS1 alters fatty acid metabolism.

• There may be connections between metastasis and metabolism.

• PGC1alpha appears to be downstream mediator of KISS1 metastasis suppression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    Article  CAS  PubMed  Google Scholar 

  2. Warburg O, Wind F, Negelein E (1927) The metabolism of tumors in the body. J Gen Physiol 8:519–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Crabtree HG (1928) The carbohydrate metabolism of certain pathological overgrowths. Biochem J 22:1289–1298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Crabtree HG (1929) Observations on the carbohydrate metabolism of tumours. Biochem J 23:536–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4:891–899

    Article  CAS  PubMed  Google Scholar 

  6. Kaelin WG, Thompson CB (2010) Q&A: cancer: clues from cell metabolism. Nature 465:562–564

    Article  CAS  PubMed  Google Scholar 

  7. Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11:85–95

    Article  CAS  PubMed  Google Scholar 

  8. Dang CV (1999) c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol Cell Biol 19:1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Semenza GL (2009) Regulation of cancer cell metabolism by hypoxia-inducible factor 1. Semin Cancer Biol 19:12–16

    Article  CAS  PubMed  Google Scholar 

  10. Lopez-Rios F, Sanchez-Arago M, García-García E, Ortega AD, Berrendero JR, Pozo-Rodríguez F, Lopez-Encuentra A, Ballestín C, Cuezva JM (2007) Loss of the mitochondrial bioenergetic capacity underlies the glucose avidity of carcinomas. Cancer Res 67:9013–9017

    Article  CAS  PubMed  Google Scholar 

  11. Chiche J, Rouleau M, Gounon P, Brahimi-Horn MC, Pouyssegur J, Mazure NM (2010) Hypoxic enlarged mitochondria protect cancer cells from apoptotic stimuli. J Cell Physiol 222:648–657

    CAS  PubMed  Google Scholar 

  12. Thompson CB (2009) Metabolic enzymes as oncogenes or tumor suppressors. N Engl J Med 360:813–815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ishikawa K, Takenaga K, Akimoto M, Koshikawa N, Yamaguchi A, Imanishi H, Nakada K, Honma Y, Hayashi J (2008) ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science 320:661–664

    Article  CAS  PubMed  Google Scholar 

  14. Koshikawa N, Hayashi J, Nakagawara A, Takenaga K (2009) Reactive oxygen species-generating mitochondrial DNA mutation up-regulates hypoxia-inducible factor-1alpha gene transcription via phosphatidylinositol 3-kinase-Akt/protein kinase C/histone deacetylase pathway. J Biol Chem 284:33185–33194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ishikawa K, Hashizume O, Koshikawa N, Fukuda S, Nakada K, Takenaga K, Hayashi J (2008) Enhanced glycolysis induced by mtDNA mutations does not regulate metastasis. FEBS Lett 582:3525–3530

    Article  CAS  PubMed  Google Scholar 

  16. Pantel K, Brakenhoff RH (2004) Dissecting the metastatic cascade. Nat Rev Cancer 4:448–456

    Article  CAS  PubMed  Google Scholar 

  17. Francia G, Cruz-Munoz W, Man S, Xu P, Kerbel RS (2011) Mouse models of advanced spontaneous metastasis for experimental therapeutics. Nat Rev Cancer 11:135–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Khanna C, Hunter K (2005) Modeling metastasis in vivo. Carcinogenesis 26:513–523

    Article  CAS  PubMed  Google Scholar 

  19. Eccles SA, Welch DR (2007) Metastasis: recent discoveries and novel treatment strategies. Lancet 369:1742–1757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Welch DR (2006) Defining a cancer metastasis. In: American Association for Cancer Research, ed. AACR Education Book 2006. Philadelphia: AACR, 111–115

  21. Payen VL, Porporato PE, Baselet B, Sonveaux P (2016) Metabolic changes associated with tumor metastasis, part 1: tumor pH, glycolysis and the pentose phosphate pathway. Cell Mol Life Sci 73:1333–1348

    Article  CAS  PubMed  Google Scholar 

  22. Porporato PE, Payen VL, Baselet B, Sonveaux P (2016) Metabolic changes associated with tumor metastasis, part 2: mitochondria, lipid and amino acid metabolism. Cell Mol Life Sci 73:1349–1363

    Article  CAS  PubMed  Google Scholar 

  23. Lee J-H, Miele ME, Hicks DJ, Phillips KK, Trent JM, Weissman BE, Welch DR (1996) KiSS-1, a novel human malignant melanoma metastasis-suppressor gene. J Natl Cancer Inst 88:1731–1737

    Article  CAS  PubMed  Google Scholar 

  24. Lee J-H, Welch DR (1997) Suppression of metastasis in human breast carcinoma MDA-MB-435 cells after transfection with the metastasis suppressor gene, KiSS-1. Cancer Res 57:2384–2387

    CAS  PubMed  Google Scholar 

  25. Ohtaki T, Shintani Y, Honda S, Matsumoto H, Hori A, Kanehashi K, Torao Y, Kumano S, Takatsu Y, Matsuda Y et al (2001) Metastasis suppressor gene KiSS1 encodes peptide ligand of a G-protein-coupled receptor. Nature 411:613–617

    Article  CAS  PubMed  Google Scholar 

  26. Harihar S, Pounds KM, Iwakuma T, Seidah NG, Welch DR (2014) Furin is the major proprotein convertase required for KISS1-to-Kisspeptin processing. PLoS One 9:e84958

    Article  PubMed  PubMed Central  Google Scholar 

  27. Nash KT, Phadke PA, Navenot J-M, Hurst DR, Accavitti-Loper MA, Sztul E, Vaidya KS, Frost AR, Kappes JC, Peiper SC et al (2007) KISS1 metastasis suppressor secretion, multiple organ metastasis suppression, and maintenance of tumor dormancy. J Natl Cancer Inst 99:309–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Muir AI, Chamberlain L, Elshourbagy NA, Michalovich D, Moore DJ, Calamari A, Szekeres PG, Sarau HM, Chambers JK, Murdock P et al (2001) AXOR12: a novel human G protein-coupled receptor, activated by the peptide KiSS-1. J Biol Chem 276:28969–28975

    Article  CAS  PubMed  Google Scholar 

  29. Kotani M, Detheux M, Vandenbogaerde A, Communi D, Vanderwinden JM, Le Poul E, Brezillon S, Tyldesley R, Suarez-Huerta N, Vandeput F et al (2001) The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J Biol Chem 276:34631–34636

    Article  CAS  PubMed  Google Scholar 

  30. Beck BH, Welch DR (2010) The KISS1 metastasis suppressor: a good night kiss for disseminated cancer cells. Eur J Cancer 46:1283–1289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu W, Beck BH, Vaidya KS, Nash KT, Feeley KP, Ballinger SW, Pounds KM, Denning WL, Diers AR, Landar A et al (2014) Metastasis suppressor KISS1 seems to reverse the Warburg effect by enhancing mitochondrial biogenesis. Cancer Res 74:954–963

    Article  CAS  PubMed  Google Scholar 

  32. Rogers GW, Nadanaciva S, Swiss R, Divakaruni AS, Will Y (2014) Assessment of fatty acid beta oxidation in cells and isolated mitochondria. Curr Protoc Toxicol 60:25–19

    Google Scholar 

  33. TeSlaa T, Teitell MA (2014) Techniques to monitor glycolysis. Methods Enzymol 542:91–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wilkins HM, Koppel S, Carl SM, Ramanujan S, Weidling I, Michaelis ML, Michaelis EK, Swerdlow RH (2016) Oxaloacetate enhances neuronal cell bioenergetic fluxes and infrastructure. J Neurochem 137:76–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cheng G, Zielonka J, Dranka BP, McAllister D, Mackinnon AC Jr, Joseph J, Kalyanaraman B (2012) Mitochondria-targeted drugs synergize with 2-deoxyglucose to trigger breast cancer cell death. Cancer Res 72:2634–2644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yang W, Zheng Y, Xia Y, Ji H, Chen X, Guo F, Lyssiotis CA, Aldape K, Cantley LC, Lu Z (2012) ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. Nat Cell Biol 14:1295–1304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mathupala SP, Ko YH, Pedersen PL (2006) Hexokinase II: Cancer’s double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria. Oncogene 25:4777–4786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bartlett K, Eaton S (2004) Mitochondrial beta-oxidation. Eur J Biochem 271:462–469

    Article  CAS  PubMed  Google Scholar 

  40. Houten SM, Wanders RJ (2010) A general introduction to the biochemistry of mitochondrial fatty acid beta-oxidation. J Inherit Metab dis 33:469–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Santos CR, Schulze A (2012) Lipid metabolism in cancer. FEBS J 279:2610–2623

    Article  CAS  PubMed  Google Scholar 

  42. Wang C, Rajput S, Watabe K, Liao DF, Cao D (2010) Acetyl-CoA carboxylase-a as a novel target for cancer therapy. Front Biosci (Schol Ed) 2:515–526

    Google Scholar 

  43. Hardie DG, Carling D (1997) The AMP-activated protein kinase—fuel gauge of the mammalian cell? Eur J Biochem 246:259–273

    Article  CAS  PubMed  Google Scholar 

  44. Warden SM, Richardson C, O'Donnell J Jr, Stapleton D, Kemp BE, Witters LA (2001) Post-translational modifications of the beta-1 subunit of AMP-activated protein kinase affect enzyme activity and cellular localization. Biochem J 354:275–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA, DePinho RA, Cantley LC (2004) The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci U S A 101:3329–3335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Winder WW, Hardie DG (1996) Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise. Am J Phys 270:E299–E304

    CAS  Google Scholar 

  47. Hardie DG, Corton J, Ching YP, Davies SP, Hawley S (1997) Regulation of lipid metabolism by the AMP-activated protein kinase. Biochem Soc Trans 25:1229–1231

    Article  CAS  PubMed  Google Scholar 

  48. Jager S, Handschin C, St-Pierre J, Spiegelman BM (2007) AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci U S A 104:12017–12022

    Article  PubMed  PubMed Central  Google Scholar 

  49. Tennant DA, Duran RV, Boulahbel H, Gottlieb E (2009) Metabolic transformation in cancer. Carcinogenesis 30:1269–1280

    Article  CAS  PubMed  Google Scholar 

  50. Simonnet H, Alazard N, Pfeiffer K, Gallou C, Beroud C, Demont J, Bouvier R, Schagger H, Godinot C (2002) Low mitochondrial respiratory chain content correlates with tumor aggressiveness in renal cell carcinoma. Carcinogenesis 23:759–768

    Article  CAS  PubMed  Google Scholar 

  51. Pavlides S, Vera I, Gandara R, Sneddon S, Pestell RG, Mercier I, Martinez-Outschoorn UE, Whitaker-Menezes D, Howell A, Sotgia F et al (2012) Warburg meets autophagy: cancer-associated fibroblasts accelerate tumor growth and metastasis via oxidative stress, mitophagy, and aerobic glycolysis. Antioxid Redox Signal 16:1264–1284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pastorino JG, Shulga N, Hoek JB (2002) Mitochondrial binding of hexokinase II inhibits Bax-induced cytochrome c release and apoptosis. J Biol Chem 277:7610–7618

    Article  CAS  PubMed  Google Scholar 

  53. Navenot JM, Fujii N, Peiper SC (2009) KISS1 metastasis suppressor gene product induces suppression of tyrosine kinase receptor signaling to Akt, tumor necrosis factor family ligand expression, and apoptosis. Mol Pharmacol 75:1074–1083

    Article  CAS  PubMed  Google Scholar 

  54. Navenot JM, Fujii N, Peiper SC (2009) Activation of Rho and Rho-associated kinase by GPR54 and KiSS1 metastasis suppressor gene product induces changes of cell morphology and contributes to apoptosis. Mol Pharmacol 75:1300–1306

    Article  CAS  PubMed  Google Scholar 

  55. Lemasters JJ, Holmuhamedov E (2006) Voltage-dependent anion channel (VDAC) as mitochondrial governator—thinking outside the box. Biochim Biophys Acta 1762:181–190

    Article  CAS  PubMed  Google Scholar 

  56. Zhang F, Du G (2012) Dysregulated lipid metabolism in cancer. World J Biol Chem 3:167–174

    Article  PubMed  PubMed Central  Google Scholar 

  57. Currie E, Schulze A, Zechner R, Walther TC, Farese RV Jr (2013) Cellular fatty acid metabolism and cancer. Cell Metab 18:153–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Milgraum LZ, Witters LA, Pasternack GR, Kuhajda FP (1997) Enzymes of the fatty acid synthesis pathway are highly expressed in in situ breast carcinoma. Clin Cancer Res 3:2115–2120

    CAS  PubMed  Google Scholar 

  59. Swinnen JV, Vanderhoydonc F, Elgamal AA, Eelen M, Vercaeren I, Joniau S, Van PH, Baert L, Goossens K, Heyns W et al (2000) Selective activation of the fatty acid synthesis pathway in human prostate cancer. Int J Cancer 88:176–179

    Article  CAS  PubMed  Google Scholar 

  60. Li W, Zhang C, Du H, Huang V, Sun B, Harris JP, Richardson Q, Shen X, Jin R, Li G et al (2016) Withaferin A suppresses the up-regulation of acetyl-coA carboxylase 1 and skin tumor formation in a skin carcinogenesis mouse model. Mol Carcinog 55:1739–1746

    Article  CAS  PubMed  Google Scholar 

  61. Yahagi N, Shimano H, Hasegawa K, Ohashi K, Matsuzaka T, Najima Y, Sekiya M, Tomita S, Okazaki H, Tamura Y et al (2005) Co-ordinate activation of lipogenic enzymes in hepatocellular carcinoma. Eur J Cancer 41:1316–1322

    Article  CAS  PubMed  Google Scholar 

  62. Wu X, Daniels G, Lee P, Monaco ME (2014) Lipid metabolism in prostate cancer. Am J Clin Exp Urol 2:111–120

    PubMed  PubMed Central  Google Scholar 

  63. Blum R, Kloog Y (2014) Metabolism addiction in pancreatic cancer. Cell Death Dis 5:e1065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rodrigues MF, Obre E, de Melo FH, Santos GC Jr, Galina A, Jasiulionis MG, Rossignol R, Rumjanek FD, Amoedo ND (2016) Enhanced OXPHOS, glutaminolysis and beta-oxidation constitute the metastatic phenotype of melanoma cells. Biochem J 473:703–715

    Article  CAS  PubMed  Google Scholar 

  65. Carracedo A, Cantley LC, Pandolfi PP (2013) Cancer metabolism: fatty acid oxidation in the limelight. Nat Rev Cancer 13:227–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shackelford DB, Shaw RJ (2009) The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer 9:563–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kim J, Kundu M, Viollet B, Guan KL (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13:132–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cerezo M, Tichet M, Abbe P, Ohanna M, Lehraiki A, Rouaud F, Allegra M, Giacchero D, Bahadoran P, Bertolotto C et al (2013) Metformin blocks melanoma invasion and metastasis development in AMPK/p53-dependent manner. Mol Cancer Ther 12:1605–1615

    Article  CAS  PubMed  Google Scholar 

  69. Zong H, Ren JM, Young LH, Pypaert M, Mu J, Birnbaum MJ, Shulman GI (2002) AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc Natl Acad Sci U S A 99:15983–15987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rohas LM, St-Pierre J, Uldry M, Jager S, Handschin C, Spiegelman BM (2007) A fundamental system of cellular energy homeostasis regulated by PGC-1alpha. Proc Natl Acad Sci U S A 104:7933–7938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Luo C, Lim JH, Lee Y, Granter SR, Thomas A, Vazquez F, Widlund HR, Puigserver P (2016) A PGC1alpha-mediated transcriptional axis suppresses melanoma metastasis. Nature 537:422–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by grants to DRW from Susan G. Komen for the Cure [SAC11037], the National Foundation for Cancer Research-Center for Metastasis Research, US National Cancer Institute RO1-CA134981, and using partial support from RO1-CA87728 and P30-CA168524. D.R. Welch is the Hall Family Professor of Molecular Medicine and a Kansas Bioscience Authority Eminent Scholar. This study also was supported by fellowship to SJM from the Kansas INBRE, P20 GM103418.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danny R. Welch.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manley, S.J., Liu, W. & Welch, D.R. The KISS1 metastasis suppressor appears to reverse the Warburg effect by shifting from glycolysis to mitochondrial beta-oxidation. J Mol Med 95, 951–963 (2017). https://doi.org/10.1007/s00109-017-1552-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-017-1552-2

Keywords

Navigation