Skip to main content
Log in

Dissecting the multiple myeloma-bone microenvironment reveals new therapeutic opportunities

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Multiple myeloma is a plasma cell skeletal malignancy. While therapeutic agents such as bortezomib and lenalidomide have significantly improved overall survival, the disease is currently incurable with the emergence of drug resistance limiting the efficacy of chemotherapeutic strategies. Failure to cure the disease is in part due to the underlying genetic heterogeneity of the cancer. Myeloma progression is critically dependent on the surrounding microenvironment. Defining the interactions between myeloma cells and the more genetically stable hematopoietic and mesenchymal components of the bone microenvironment is critical for the development of new therapeutic targets. In this review, we discuss recent advances in our understanding of how microenvironmental elements contribute to myeloma progression and, therapeutically, how those elements can or are currently being targeted in a bid to eradicate the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Mahindra A, Hideshima T, Anderson KC (2010) Multiple myeloma: biology of the disease. Blood Rev 24(Suppl 1):S5–S11

    Article  PubMed  Google Scholar 

  2. Ghobrial IM, Landgren O (2014) How I treat smoldering multiple myeloma. Blood 124:3380–3388

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Edwards CM, Zhuang J, Mundy GR (2008) The pathogenesis of the bone disease of multiple myeloma. Bone 42:1007–1013

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Ferlay J SI, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray, F. (2013) GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11. Lyon, France: International Agency for Research on Cancer; 2013. Available from: http://globocan.iarc.fr

  5. Rosen CJ, Ackert-Bicknell C, Rodriguez JP, Pino AM (2009) Marrow fat and the bone microenvironment: developmental, functional, and pathological implications. Crit Rev Eukaryot Gene Expr 19:109–124

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Berenson JR, Lichtenstein A, Porter L, Dimopoulos MA, Bordoni R, George S, Lipton A, Keller A, Ballester O, Kovacs M et al (1998) Long-term pamidronate treatment of advanced multiple myeloma patients reduces skeletal events. Myeloma Aredia Study Group J Clin Oncol 16:593–602

    CAS  Google Scholar 

  7. Richardson P, Mitsiades C, Schlossman R, Ghobrial I, Hideshima T, Chauhan D, Munshi N, Anderson K (2007) The treatment of relapsed and refractory multiple myeloma. Hematol Am Soc Hematol Educ Program 317–323

  8. Anderson KC (2015) Multiple myeloma: new uses for available agents, excitement for the future. J Natl Compr Canc Netw 13:694–696

    PubMed  CAS  Google Scholar 

  9. Abdi J, Chen G, Chang H (2013) Drug resistance in multiple myeloma: latest findings and new concepts on molecular mechanisms. Oncotarget 4:2186–2207

    Article  PubMed  PubMed Central  Google Scholar 

  10. Roodman GD (2010) Targeting the bone microenvironment in multiple myeloma. J Bone Miner Metab 28:244–250

    Article  PubMed  Google Scholar 

  11. Galson DL, Silbermann R, Roodman GD (2012) Mechanisms of multiple myeloma bone disease. Bonekey Rep 1:135

    Article  PubMed  PubMed Central  Google Scholar 

  12. McCloskey EV, Dunn JA, Kanis JA, MacLennan IC, Drayson MT (2001) Long-term follow-up of a prospective, double-blind, placebo-controlled randomized trial of clodronate in multiple myeloma. Br J Haematol 113:1035–1043

    Article  PubMed  CAS  Google Scholar 

  13. Croucher PI, De Hendrik R, Perry MJ, Hijzen A, Shipman CM, Lippitt J, Green J, Van Marck E, Van Camp B, Vanderkerken K (2003) Zoledronic acid treatment of 5T2MM-bearing mice inhibits the development of myeloma bone disease: evidence for decreased osteolysis, tumor burden and angiogenesis, and increased survival. J Bone Miner Res 18:482–492

    Article  PubMed  CAS  Google Scholar 

  14. Ribatti D, Vacca A (2014) The role of inflammatory cells in angiogenesis in multiple myeloma. Adv Exp Med Biol 816:361–376

    Article  PubMed  CAS  Google Scholar 

  15. Ribatti D, Basile A, Ruggieri S, Vacca A (2014) Bone marrow vascular niche and the control of angiogenesis in multiple myeloma. Front Biosci (Landmark Ed) 19:304–311

    Article  CAS  Google Scholar 

  16. De Bruyne E, Menu R, Van Valckenborgh E, De Raeve H, Van Camp B, Van Riet I, Vanderkerken K (2007) Myeloma cells and their interaction with the bone marrow endothelial cells. Curr Immunol Rev 3(1):41–55

    Article  Google Scholar 

  17. Henriksen K, Karsdal MA, Martin TJ (2014) Osteoclast-derived coupling factors in bone remodeling. Calcif Tissue Int 94:88–97

    Article  PubMed  CAS  Google Scholar 

  18. Cao H, Zhu K, Qiu L, Li S, Niu H, Hao M, Yang S, Zhao Z, Lai Y, Anderson JL et al (2013) Critical role of AKT protein in myeloma-induced osteoclast formation and osteolysis. J Biol Chem 288:30399–30410

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Raisz LG, Luben RA, Mundy GR, Dietrich JW, Horton JE, Trummel CL (1975) Effect of osteoclast activating factor from human leukocytes on bone metabolism. J Clin Invest 56:408–413

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Pearse RN, Sordillo EM, Yaccoby S, Wong BR, Liau DF, Colman N, Michaeli J, Epstein J, Choi Y (2001) Multiple myeloma disrupts the TRANCE/ osteoprotegerin cytokine axis to trigger bone destruction and promote tumor progression. Proc Natl Acad Sci U S A 98:11581–11586

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Han JH, Choi SJ, Kurihara N, Koide M, Oba Y, Roodman GD (2001) Macrophage inflammatory protein-1alpha is an osteoclastogenic factor in myeloma that is independent of receptor activator of nuclear factor kappaB ligand. Blood 97:3349–3353

    Article  PubMed  CAS  Google Scholar 

  22. Farrugia AN, Atkins GJ, To LB, Pan B, Horvath N, Kostakis P, Findlay DM, Bardy P, Zannettino AC (2003) Receptor activator of nuclear factor-kappaB ligand expression by human myeloma cells mediates osteoclast formation in vitro and correlates with bone destruction in vivo. Cancer Res 63:5438–5445

    PubMed  CAS  Google Scholar 

  23. Heider U, Langelotz C, Jakob C, Zavrski I, Fleissner C, Eucker J, Possinger K, Hofbauer LC, Sezer O (2003) Expression of receptor activator of nuclear factor kappaB ligand on bone marrow plasma cells correlates with osteolytic bone disease in patients with multiple myeloma. Clin Cancer Res 9:1436–1440

    PubMed  CAS  Google Scholar 

  24. Giuliani N, Bataille R, Mancini C, Lazzaretti M, Barille S (2001) Myeloma cells induce imbalance in the osteoprotegerin/osteoprotegerin ligand system in the human bone marrow environment. Blood 98:3527–3533

    Article  PubMed  CAS  Google Scholar 

  25. Seidel C, Hjertner Ø, Abildgaard N, Heickendorff L, Hjorth M, Westin J, Nielsen JL, Hjorth-Hansen H, Waage A, Sundan A et al (2001) Serum osteoprotegerin levels are reduced in patients with multiple myeloma with lytic bone disease. Blood 98:2269–2271

    Article  PubMed  CAS  Google Scholar 

  26. Crockett JC, Rogers MJ, Coxon FP, Hocking LJ, Helfrich MH (2011) Bone remodelling at a glance. J Cell Sci 124:991–998

    Article  PubMed  CAS  Google Scholar 

  27. McDonald DF, Schofield BH, Prezioso EM, Adams VL, Frondoza CA, Trivedi SM, Craig C, Humphrey RL (1983) Direct bone resorbing activity of murine myeloma cells. Cancer Lett 19:119–124

    Article  PubMed  CAS  Google Scholar 

  28. Calvani N, Cafforio P, Silvestris F, Dammacco F (2005) Functional osteoclast-like transformation of cultured human myeloma cell lines. Br J Haematol 130:926–938

    Article  PubMed  CAS  Google Scholar 

  29. Andersen TL, Boissy P, Sondergaard TE, Kupisiewicz K, Plesner T, Rasmussen T, Haaber J, Kolvraa S, Delaisse JM (2007) Osteoclast nuclei of myeloma patients show chromosome translocations specific for the myeloma cell clone: a new type of cancer-host partnership? J Pathol 211:10–17

    Article  PubMed  CAS  Google Scholar 

  30. Lentzsch S, Ehrlich LA, Roodman GD (2007) Pathophysiology of multiple myeloma bone disease. Hematol Oncol Clin North Am 21:1035–1049

    Article  PubMed  Google Scholar 

  31. Yaccoby S, Pearse RN, Johnson CL, Barlogie B, Choi Y, Epstein J (2002) Myeloma interacts with the bone marrow microenvironment to induce osteoclastogenesis and is dependent on osteoclast activity. Br J Haematol 116:278–290

    Article  PubMed  Google Scholar 

  32. Abe M, Hiura K, Wilde J, Shioyasono A, Moriyama K, Hashimoto T, Kido S, Oshima T, Shibata H, Ozaki S et al (2004) Osteoclasts enhance myeloma cell growth and survival via cell-cell contact: a vicious cycle between bone destruction and myeloma expansion. Blood 104:2484–2491

    Article  PubMed  CAS  Google Scholar 

  33. Rogers MJ (2004) From molds and macrophages to mevalonate: a decade of progress in understanding the molecular mode of action of bisphosphonates. Calcif Tissue Int 75:451–461

    Article  PubMed  CAS  Google Scholar 

  34. Lipton A, Fizazi K, Stopeck AT, Henry DH, Brown JE, Yardley DA, Richardson GE, Siena S, Maroto P, Clemens M et al (2012) Superiority of denosumab to zoledronic acid for prevention of skeletal-related events: a combined analysis of 3 pivotal, randomised, phase 3 trials. Eur J Cancer 48:3082–3092

    Article  PubMed  CAS  Google Scholar 

  35. Henry DH, Costa L, Goldwasser F, Hirsh V, Hungria V, Prausova J, Scagliotti GV, Sleeboom H, Spencer A, Vadhan-Raj S et al (2011) Randomized, double-blind study of denosumab versus zoledronic acid in the treatment of bone metastases in patients with advanced cancer (excluding breast and prostate cancer) or multiple myeloma. J Clin Oncol 29:1125–1132

    Article  PubMed  CAS  Google Scholar 

  36. Henry D, Vadhan-Raj S, Hirsh V, von Moos R, Hungria V, Costa L, Woll PJ, Scagliotti G, Smith G, Feng A et al (2014) Delaying skeletal-related events in a randomized phase 3 study of denosumab versus zoledronic acid in patients with advanced cancer: an analysis of data from patients with solid tumors. Support Care Cancer 22:679–687

    Article  PubMed  Google Scholar 

  37. Chioda M, Peranzoni E, Desantis G, Papalini F, Falisi E, Solito S, Samantha S, Mandruzzato S, Bronte V (2011) Myeloid cell diversification and complexity: an old concept with new turns in oncology. Cancer Metastasis Rev 30:27–43

    Article  PubMed  Google Scholar 

  38. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V (2012) Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12:253–268

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Solito S, Marigo I, Pinton L, Damuzzo V, Mandruzzato S, Bronte V (2014) Myeloid-derived suppressor cell heterogeneity in human cancers. Ann N Y Acad Sci 1319:47–65

    Article  PubMed  CAS  Google Scholar 

  40. Van Valckenborgh E, Schouppe E, Movahedi K, De Bruyne E, Menu E, De Baetselier P, Vanderkerken K, Van Ginderachter JA (2012) Multiple myeloma induces the immunosuppressive capacity of distinct myeloid-derived suppressor cell subpopulations in the bone marrow. Leukemia 26:2424–2428

    Article  PubMed  Google Scholar 

  41. Ramachandran IR, Martner A, Pisklakova A, Condamine T, Chase T, Vogl T, Roth J, Gabrilovich D, Nefedova Y (2013) Myeloid-derived suppressor cells regulate growth of multiple myeloma by inhibiting T cells in bone marrow. J Immunol 190:3815–3823

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Zhuang J, Zhang J, Lwin ST, Edwards JR, Edwards CM, Mundy GR, Yang X (2012) Osteoclasts in multiple myeloma are derived from Gr-1+CD11b+myeloid-derived suppressor cells. PLoS One 7, e48871

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Yang L, DeBusk LM, Fukuda K, Fingleton B, Green-Jarvis B, Shyr Y, Matrisian LM, Carbone DP, Lin PC (2004) Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 6:409–421

    Article  PubMed  CAS  Google Scholar 

  44. Talmadge JE, Gabrilovich DI (2013) History of myeloid-derived suppressor cells. Nat Rev Cancer 13:739–752

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Peinado H, Lavotshkin S, Lyden D (2011) The secreted factors responsible for pre-metastatic niche formation: old sayings and new thoughts. Semin Cancer Biol 21:139–146

    Article  PubMed  CAS  Google Scholar 

  46. Serafini P, Meckel K, Kelso M, Noonan K, Califano J, Koch W, Dolcetti L, Bronte V, Borrello I (2006) Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. J Exp Med 203:2691–2702

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Noonan KA, Ghosh N, Rudraraju L, Bui M, Borrello I (2014) Targeting immune suppression with PDE5 inhibition in end-stage multiple myeloma. Cancer Immunol Res 2:725–731

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ruffell B, Affara NI, Coussens LM (2012) Differential macrophage programming in the tumor microenvironment. Trends Immunol 33:119–126

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Biswas SK, Gangi L, Paul S, Schioppa T, Saccani A, Sironi M, Bottazzi B, Doni A, Vincenzo B, Pasqualini F et al (2006) A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-kappaB and enhanced IRF-3/STAT1 activation). Blood 107:2112–2122

    Article  PubMed  CAS  Google Scholar 

  50. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25:677–686

    Article  PubMed  CAS  Google Scholar 

  51. Beider K, Bitner H, Leiba M, Gutwein O, Koren-Michowitz M, Ostrovsky O, Abraham M, Wald H, Galun E, Peled A et al (2014) Multiple myeloma cells recruit tumor-supportive macrophages through the CXCR4/CXCL12 axis and promote their polarization toward the M2 phenotype. Oncotarget 5:11283–11296

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kim J, Denu RA, Dollar BA, Escalante LE, Kuether JP, Callander NS, Asimakopoulos F, Hematti P (2012) Macrophages and mesenchymal stromal cells support survival and proliferation of multiple myeloma cells. Br J Haematol 158:336–346

    Article  PubMed  PubMed Central  Google Scholar 

  53. Gu ZJ, Costes V, Lu ZY, Zhang XG, Pitard V, Moreau JF, Bataille R, Wijdenes J, Rossi JF, Klein B (1996) Interleukin-10 is a growth factor for human myeloma cells by induction of an oncostatin M autocrine loop. Blood 88:3972–3986

    PubMed  CAS  Google Scholar 

  54. Alexandrakis MG, Goulidaki N, Pappa CA, Boula A, Psarakis F, Neonakis I, Tsirakis G (2015) Interleukin-10 induces both plasma cell proliferation and angiogenesis in multiple myeloma. Pathol Oncol Res 21(4):929–934

    Article  PubMed  CAS  Google Scholar 

  55. Zheng Y, Cai Z, Wang S, Zhang X, Qian J, Hong S, Li H, Wang M, Yang J, Yi Q (2009) Macrophages are an abundant component of myeloma microenvironment and protect myeloma cells from chemotherapy drug-induced apoptosis. Blood 114:3625–3628

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Scavelli C, Nico B, Cirulli T, Ria R, Di Pietro G, Mangieri D, Bacigalupo A, Mangialardi G, Coluccia AM, Caravita T et al (2008) Vasculogenic mimicry by bone marrow macrophages in patients with multiple myeloma. Oncogene 27:663–674

    Article  PubMed  CAS  Google Scholar 

  57. Chen H, Campbell RA, Chang Y, Li M, Wang CS, Li J, Sanchez E, Share M, Steinberg J, Berenson A et al (2009) Pleiotrophin produced by multiple myeloma induces transdifferentiation of monocytes into vascular endothelial cells: a novel mechanism of tumor-induced vasculogenesis. Blood 113:1992–2002

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. Berardi S, Ria R, Reale A, De Luisi A, Catacchio I, Moschetta M, Vacca A (2013) Multiple myeloma macrophages: pivotal players in the tumor microenvironment. J Oncol 2013 Article ID 183602

  59. Cook J, Hagemann T (2013) Tumour-associated macrophages and cancer. Curr Opin Pharmacol 13:595–601

    Article  PubMed  CAS  Google Scholar 

  60. Ries CH, Hoves S, Cannarile MA, Rüttinger D (2015) CSF-1/CSF-1R targeting agents in clinical development for cancer therapy. Curr Opin Pharmacol 23:45–51

    Article  PubMed  CAS  Google Scholar 

  61. Rakhmilevich AL, Alderson KL, Sondel PM (2012) T-cell-independent antitumor effects of CD40 ligation. Int Rev Immunol 31:267–278

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  62. Jensen JL, Rakhmilevich A, Heninger E, Broman AT, Hope C, Phan F, Miyamoto S, Maroulakou I, Callander N, Hematti P et al (2015) Tumoricidal effects of macrophage-activating immunotherapy in a murine model of relapsed/refractory multiple myeloma. Cancer Immunol Res 3(8):881–890

    Article  PubMed  CAS  Google Scholar 

  63. Jego G, Pascual V, Palucka AK, Banchereau J (2005) Dendritic cells control B cell growth and differentiation. Curr Dir Autoimmun 8:124–139

    Article  PubMed  CAS  Google Scholar 

  64. Brown RD, Pope B, Murray A, Esdale W, Sze DM, Gibson J, Ho PJ, Hart D, Joshua D (2001) Dendritic cells from patients with myeloma are numerically normal but functionally defective as they fail to up-regulate CD80 (B7-1) expression after huCD40LT stimulation because of inhibition by transforming growth factor-beta1 and interleukin-10. Blood 98:2992–2998

    Article  PubMed  CAS  Google Scholar 

  65. Chauhan D, Singh AV, Brahmandam M, Carrasco R, Bandi M, Hideshima T, Bianchi G, Podar K, Tai YT, Mitsiades C et al (2009) Functional interaction of plasmacytoid dendritic cells with multiple myeloma cells: a therapeutic target. Cancer Cell 16:309–323

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  66. Ratta M, Fagnoni F, Curti A, Vescovini R, Sansoni P, Oliviero B, Fogli M, Ferri E, Della Cuna GR, Tura S et al (2002) Dendritic cells are functionally defective in multiple myeloma: the role of interleukin-6. Blood 100:230–237

    Article  PubMed  CAS  Google Scholar 

  67. Kukreja A, Hutchinson A, Dhodapkar K, Mazumder A, Vesole D, Angitapalli R, Jagannath S, Dhodapkar MV (2006) Enhancement of clonogenicity of human multiple myeloma by dendritic cells. J Exp Med 203:1859–1865

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  68. Tucci M, Ciavarella S, Strippoli S, Brunetti O, Dammacco F, Silvestris F (2011) Immature dendritic cells from patients with multiple myeloma are prone to osteoclast differentiation in vitro. Exp Hematol 39:773–783

    Article  PubMed  CAS  Google Scholar 

  69. Tucci M, Stucci S, Savonarola A, Ciavarella S, Cafforio P, Dammacco F, Silvestris F (2013) Immature dendritic cells in multiple myeloma are prone to osteoclast-like differentiation through interleukin-17A stimulation. Br J Haematol 161:821–831

    Article  PubMed  CAS  Google Scholar 

  70. Parrinello N, Conticello C, Cavalli M, La Fauci A, Rizzo G, La Cava P, Chiarenza A, Tibullo D, Giallongo C, Palumbo GA et al (2013) Neutrophils of multiple myeloma are dysfunctional and immunosuppressive. Blood 122:3138–3148

    Article  CAS  Google Scholar 

  71. Wong D, Winter O, Hartig C, Siebels S, Szyska M, Tiburzy B, Meng L, Kulkarni U, Fähnrich A, Bommert K et al (2014) Eosinophils and megakaryocytes support the early growth of murine MOPC315 myeloma cells in their bone marrow niches. PLoS One 9, e109018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Nico B, Mangieri D, Crivellato E, Vacca A, Ribatti D (2008) Mast cells contribute to vasculogenic mimicry in multiple myeloma. Stem Cells Dev 17:19–22

    Article  PubMed  CAS  Google Scholar 

  73. Pappa CA, Tsirakis G, Stavroulaki E, Kokonozaki M, Xekalou A, Konsolas I, Alexandrakis MG (2015) Mast cells influence the proliferation rate of myeloma plasma cells. Cancer Invest 33:137–141

    Article  PubMed  CAS  Google Scholar 

  74. D’Amico L, Roato I (2012) Cross-talk between T cells and osteoclasts in bone resorption. Bonekey Rep 1:82

    PubMed  PubMed Central  Google Scholar 

  75. Kong YY, Feige U, Sarosi I, Bolon B, Tafuri A, Morony S, Capparelli C, Li J, Elliott R, McCabe S et al (1999) Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 402:304–309

    Article  PubMed  CAS  Google Scholar 

  76. Cook LM, Shay G, Aruajo A, Lynch CC (2014) Integrating new discoveries into the “vicious cycle” paradigm of prostate to bone metastases. Cancer Metastasis Rev 33(2–3):511–525

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  77. Zou L, Barnett B, Safah H, Larussa VF, Evdemon-Hogan M, Mottram P, Wei S, David O, Curiel TJ, Zou W (2004) Bone marrow is a reservoir for CD4+CD25+ regulatory T cells that traffic through CXCL12/CXCR4 signals. Cancer Res 64:8451–8455

    Article  PubMed  CAS  Google Scholar 

  78. Beyer M, Schultze JL (2009) Regulatory T cells: major players in the tumor microenvironment. Curr Pharm Des 15:1879–1892

    Article  PubMed  CAS  Google Scholar 

  79. Beyer M, Kochanek M, Giese T, Endl E, Weihrauch MR, Knolle PA, Classen S, Schultze JL (2006) In vivo peripheral expansion of naive CD4+CD25high FoxP3+ regulatory T cells in patients with multiple myeloma. Blood 107:3940–3949

    Article  PubMed  CAS  Google Scholar 

  80. Prabhala RH, Neri P, Bae JE, Tassone P, Shammas MA, Allam CK, Daley JF, Chauhan D, Blanchard E, Thatte HS et al (2006) Dysfunctional T regulatory cells in multiple myeloma. Blood 107:301–304

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  81. Giannopoulos K, Kaminska W, Hus I, Dmoszynska A (2012) The frequency of T regulatory cells modulates the survival of multiple myeloma patients: detailed characterisation of immune status in multiple myeloma. Br J Cancer 106:546–552

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  82. Bryant C, Suen H, Brown R, Yang S, Favaloro J, Aklilu E, Gibson J, Ho PJ, Iland H, Fromm P et al (2013) Long-term survival in multiple myeloma is associated with a distinct immunological profile, which includes proliferative cytotoxic T-cell clones and a favourable Treg/Th17 balance. Blood Cancer J 3, e148

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  83. Foglietta M, Castella B, Mariani S, Coscia M, Godio L, Ferracini R, Ruggeri M, Muccio V, Omedé P, Palumbo A et al (2014) The bone marrow of myeloma patients is steadily inhabited by a normal-sized pool of functional regulatory T cells irrespective of the disease status. Haematologica 99:1605–1610

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  84. Muthu Raja KR, Kubiczkova L, Rihova L, Piskacek M, Vsianska P, Hezova R, Pour L, Hajek R (2012) Functionally suppressive CD8 T regulatory cells are increased in patients with multiple myeloma: a cause for immune impairment. PLoS One 7, e49446

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Moss P, Gillespie G, Frodsham P, Bell J, Reyburn H (1996) Clonal populations of CD4+ and CD8+ T cells in patients with multiple myeloma and paraproteinemia. Blood 87:3297–3306

    PubMed  CAS  Google Scholar 

  86. Racanelli V, Leone P, Frassanito MA, Brunetti C, Perosa F, Ferrone S, Dammacco F (2010) Alterations in the antigen processing-presenting machinery of transformed plasma cells are associated with reduced recognition by CD8+ T cells and characterize the progression of MGUS to multiple myeloma. Blood 115:1185–1193

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  87. Witzens-Harig M, Hose D, Junger S, Pfirschke C, Khandelwal N, Umansky L, Seckinger A, Conrad H, Brackertz B, Reme T et al (2013) Tumor cells in multiple myeloma patients inhibit myeloma-reactive T cells through carcinoembryonic antigen-related cell adhesion molecule-6. Blood 121:4493–4503

    Article  PubMed  CAS  Google Scholar 

  88. Liu J, Hamrouni A, Wolowiec D, Coiteux V, Kuliczkowski K, Hetuin D, Saudemont A, Quesnel B (2007) Plasma cells from multiple myeloma patients express B7-H1 (PD-L1) and increase expression after stimulation with IFN-{gamma} and TLR ligands via a MyD88-, TRAF6-, and MEK-dependent pathway. Blood 110:296–304

    Article  PubMed  CAS  Google Scholar 

  89. Yousef S, Marvin J, Steinbach M, Langemo A, Kovacsovics T, Binder M, Kröger N, Luetkens T, Atanackovic D (2015) Immunomodulatory molecule PD-L1 is expressed on malignant plasma cells and myeloma-propagating pre-plasma cells in the bone marrow of multiple myeloma patients. Blood Cancer J 5, e285

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  90. Rosenblatt J, Glotzbecker B, Mills H, Vasir B, Tzachanis D, Levine JD, Joyce RM, Wellenstein K, Keefe W, Schickler M et al (2011) PD-1 blockade by CT-011, anti-PD-1 antibody, enhances ex vivo T-cell responses to autologous dendritic cell/myeloma fusion vaccine. J Immunother 34:409–418

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  91. Feyler S, Scott GB, Parrish C, Jarmin S, Evans P, Short M, McKinley K, Selby PJ, Cook G (2012) Tumour cell generation of inducible regulatory T-cells in multiple myeloma is contact-dependent and antigen-presenting cell-independent. PLoS One 7, e35981

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  92. Luptakova K, Rosenblatt J, Glotzbecker B, Mills H, Stroopinsky D, Kufe T, Vasir B, Arnason J, Tzachanis D, Zwicker JI et al (2013) Lenalidomide enhances anti-myeloma cellular immunity. Cancer Immunol Immunother 62:39–49

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  93. Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N (2002) Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci U S A 99:12293–12297

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  94. Kearl TJ, Jing W, Gershan JA, Johnson BD (2013) Programmed death receptor-1/programmed death receptor ligand-1 blockade after transient lymphodepletion to treat myeloma. J Immunol 190:5620–5628

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  95. Hallett WH, Jing W, Drobyski WR, Johnson BD (2011) Immunosuppressive effects of multiple myeloma are overcome by PD-L1 blockade. Biol Blood Marrow Transplant 17:1133–1145

    Article  PubMed  CAS  Google Scholar 

  96. Shapiro-Shelef M, Calame K (2004) Plasma cell differentiation and multiple myeloma. Curr Opin Immunol 16:226–234

    Article  PubMed  CAS  Google Scholar 

  97. Pilarski LM, Ruether BA, Mant MJ (1985) Abnormal function of B lymphocytes from peripheral blood of multiple myeloma patients. Lack of correlation between the number of cells potentially able to secrete immunoglobulin M and serum immunoglobulin M levels. J Clin Invest 75:2024–2029

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  98. Carmichael J, Carter CR, Parrish C, Kallmeyer C, Feyler S, Wood PM, Cook G (2014) Reduced circulating memory B-cells account for humoral immune defects in multiple myeloma, associated with infective risk and poor vaccination responses. Blood 124:3393

    Google Scholar 

  99. Oden F, Marino SF, Brand J, Scheu S, Kriegel C, Olal D, Takvorian A, Westermann J, Yilmaz B, Hinz M et al (2015) Potent anti-tumor response by targeting B cell maturation antigen (BCMA) in a mouse model of multiple myeloma. Mol Oncol 9(7):1348–1358

    Article  PubMed  CAS  Google Scholar 

  100. Bae J, Tai YT, Anderson KC, Munshi NC (2011) Novel epitope evoking CD138 antigen-specific cytotoxic T lymphocytes targeting multiple myeloma and other plasma cell disorders. Br J Haematol 155:349–361

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  101. Jurisic V, Srdic T, Konjevic G, Markovic O, Colovic M (2007) Clinical stage-depending decrease of NK cell activity in multiple myeloma patients. Med Oncol 24:312–317

    Article  PubMed  Google Scholar 

  102. Shi J, Tricot GJ, Garg TK, Malaviarachchi PA, Szmania SM, Kellum RE, Storrie B, Mulder A, Shaughnessy JD, Barlogie B et al (2008) Bortezomib down-regulates the cell-surface expression of HLA class I and enhances natural killer cell-mediated lysis of myeloma. Blood 111:1309–1317

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  103. Davies FE, Raje N, Hideshima T, Lentzsch S, Young G, Tai YT, Lin B, Podar K, Gupta D, Chauhan D et al (2001) Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. Blood 98:210–216

    Article  PubMed  CAS  Google Scholar 

  104. Benson DM, Bakan CE, Mishra A, Hofmeister CC, Efebera Y, Becknell B, Baiocchi RA, Zhang J, Yu J, Smith MK et al (2010) The PD-1/PD-L1 axis modulates the natural killer cell versus multiple myeloma effect: a therapeutic target for CT-011, a novel monoclonal anti-PD-1 antibody. Blood 116:2286–2294

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  105. Swift BE, Williams BA, Kosaka Y, Wang XH, Medin JA, Viswanathan S, Martinez-Lopez J, Keating A (2012) Natural killer cell lines preferentially kill clonogenic multiple myeloma cells and decrease myeloma engraftment in a bioluminescent xenograft mouse model. Haematologica 97:1020–1028

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  106. Szmania S, Lapteva N, Garg T, Greenway A, Lingo J, Nair B, Stone K, Woods E, Khan J, Stivers J et al (2015) Ex vivo-expanded natural killer cells demonstrate robust proliferation in vivo in high-risk relapsed multiple myeloma patients. J Immunother 38:24–36

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  107. Chu J, Deng Y, Benson DM, He S, Hughes T, Zhang J, Peng Y, Mao H, Yi L, Ghoshal K et al (2014) CS1-specific chimeric antigen receptor (CAR)-engineered natural killer cells enhance in vitro and in vivo antitumor activity against human multiple myeloma. Leukemia 28:917–927

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  108. Xing F, Saidou J, Watabe K (2010) Cancer associated fibroblasts (CAFs) in tumor microenvironment. Front Biosci (Landmark Ed) 15:166–179

    Article  CAS  Google Scholar 

  109. Reagan MR, Ghobrial IM (2012) Multiple myeloma mesenchymal stem cells: characterization, origin, and tumor-promoting effects. Clin Cancer Res 18:342–349

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  110. Lauta VM (2001) Interleukin-6 and the network of several cytokines in multiple myeloma: an overview of clinical and experimental data. Cytokine 16:79–86

    Article  PubMed  CAS  Google Scholar 

  111. Yoshizaki K, Nakagawa T, Fukunaga K, Tseng LT, Yamamura Y, Kishimoto T (1984) Isolation and characterization of B cell differentiation factor (BCDF) secreted from a human B lymphoblastoid cell line. J Immunol 132:2948–2954

    PubMed  CAS  Google Scholar 

  112. Meads MB, Hazlehurst LA, Dalton WS (2008) The bone marrow microenvironment as a tumor sanctuary and contributor to drug resistance. Clin Cancer Res 14:2519–2526

    Article  PubMed  CAS  Google Scholar 

  113. Katz BZ (2010) Adhesion molecules—the lifelines of multiple myeloma cells. Semin Cancer Biol 20:186–195

    Article  PubMed  CAS  Google Scholar 

  114. Hideshima T, Chauhan D, Schlossman R, Richardson P, Anderson KC (2001) The role of tumor necrosis factor alpha in the pathophysiology of human multiple myeloma: therapeutic applications. Oncogene 20:4519–4527

    Article  PubMed  CAS  Google Scholar 

  115. Morgan MR, Humphries MJ, Bass MD (2007) Synergistic control of cell adhesion by integrins and syndecans. Nat Rev Mol Cell Biol 8:957–969

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  116. Damiano JS, Cress AE, Hazlehurst LA, Shtil AA, Dalton WS (1999) Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines. Blood 93:1658–1667

    PubMed  CAS  Google Scholar 

  117. Mitsiades CS, McMillin DW, Klippel S, Hideshima T, Chauhan D, Richardson PG, Munshi NC, Anderson KC (2007) The role of the bone marrow microenvironment in the pathophysiology of myeloma and its significance in the development of more effective therapies. Hematol Oncol Clin North Am 21:1007–1034

    Article  PubMed  Google Scholar 

  118. Hao M, Zhang L, An G, Meng H, Han Y, Xie Z, Xu Y, Li C, Yu Z, Chang H et al (2011) Bone marrow stromal cells protect myeloma cells from bortezomib induced apoptosis by suppressing microRNA-15a expression. Leuk Lymphoma 52:1787–1794

    Article  PubMed  CAS  Google Scholar 

  119. Wang X, Zhang Z, Yao C (2010) Survivin is upregulated in myeloma cell lines cocultured with mesenchymal stem cells. Leuk Res 34:1325–1329

    Article  PubMed  CAS  Google Scholar 

  120. Roodman GD (2007) Treatment strategies for bone disease. Bone Marrow Transplant 40:1139–1146

    Article  PubMed  CAS  Google Scholar 

  121. Sati HI, Greaves M, Apperley JF, Russell RG, Croucher PI (1999) Expression of interleukin-1beta and tumour necrosis factor-alpha in plasma cells from patients with multiple myeloma. Br J Haematol 104:350–357

    Article  PubMed  CAS  Google Scholar 

  122. Oyajobi BO, Mundy GR (2003) Receptor activator of NF-kappaB ligand, macrophage inflammatory protein-1alpha, and the proteasome: novel therapeutic targets in myeloma. Cancer 97:813–817

    Article  PubMed  Google Scholar 

  123. Garderet L, Mazurier C, Chapel A, Ernou I, Boutin L, Holy X, Gorin NC, Lopez M, Doucet C, Lataillade JJ (2007) Mesenchymal stem cell abnormalities in patients with multiple myeloma. Leuk Lymphoma 48:2032–2041

    Article  PubMed  CAS  Google Scholar 

  124. Li B, Fu J, Chen P, Zhuang W (2010) Impairment in immunomodulatory function of mesenchymal stem cells from multiple myeloma patients. Arch Med Res 41:623–633

    Article  PubMed  CAS  Google Scholar 

  125. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, Grisanti S, Gianni AM (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99:3838–3843

    Article  PubMed  Google Scholar 

  126. Li X, Ling W, Khan S, Yaccoby S (2012) Therapeutic effects of intrabone and systemic mesenchymal stem cell cytotherapy on myeloma bone disease and tumor growth. J Bone Miner Res 27:1635–1648

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  127. Atsuta I, Liu S, Miura Y, Akiyama K, Chen C, An Y, Shi S, Chen FM (2013) Mesenchymal stem cells inhibit multiple myeloma cells via the Fas/Fas ligand pathway. Stem Cell Res Ther 4:111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Kurzrock R, Voorhees PM, Casper C, Furman RR, Fayad L, Lonial S, Borghaei H, Jagannath S, Sokol L, Usmani SZ et al (2013) A phase I, open-label study of siltuximab, an anti-IL-6 monoclonal antibody, in patients with B-cell non-Hodgkin lymphoma, multiple myeloma, or Castleman disease. Clin Cancer Res 19:3659–3670

    Article  PubMed  CAS  Google Scholar 

  129. San-Miguel J, Bladé J, Shpilberg O, Grosicki S, Maloisel F, Min CK, Polo Zarzuela M, Robak T, Prasad SV, Tee Goh Y et al (2014) Phase 2 randomized study of bortezomib-melphalan-prednisone with or without siltuximab (anti-IL-6) in multiple myeloma. Blood 123:4136–4142

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  130. Nair RR, Gebhard AW, Emmons MF, Hazlehurst LA (2012) Emerging strategies for targeting cell adhesion in multiple myeloma. Adv Pharmacol 65:143–189

    Article  PubMed  CAS  Google Scholar 

  131. Nair RR, Emmons MF, Cress AE, Argilagos RF, Lam K, Kerr WT, Wang HG, Dalton WS, Hazlehurst LA (2009) HYD1-induced increase in reactive oxygen species leads to autophagy and necrotic cell death in multiple myeloma cells. Mol Cancer Ther 8:2441–2451

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  132. Roodman GD (2011) Osteoblast function in myeloma. Bone 48:135–140

    Article  PubMed  Google Scholar 

  133. Fukumoto S (2015) FGF23-FGF receptor/Klotho pathway as a new drug target for disorders of bone and mineral metabolism. Calcif Tissue Int. doi:10.1007/s00223-015-0029-y

    PubMed  Google Scholar 

  134. Ruan J, Trotter TN, Nan L, Luo R, Javed A, Sanderson RD, Suva LJ, Yang Y (2013) Heparanase inhibits osteoblastogenesis and shifts bone marrow progenitor cell fate in myeloma bone disease. Bone 57:10–17

    Article  PubMed  CAS  Google Scholar 

  135. Fulciniti M, Tassone P, Hideshima T, Vallet S, Nanjappa P, Ettenberg SA, Shen Z, Patel N, Tai YT, Chauhan D et al (2009) Anti-DKK1 mAb (BHQ880) as a potential therapeutic agent for multiple myeloma. Blood 114:371–379

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  136. Iyer SP, Beck JT, Stewart AK, Shah J, Kelly KR, Isaacs R, Bilic S, Sen S, Munshi NC (2014) A phase IB multicentre dose-determination study of BHQ880 in combination with anti-myeloma therapy and zoledronic acid in patients with relapsed or refractory multiple myeloma and prior skeletal-related events. Br J Haematol 167:366–375

    Article  PubMed  CAS  Google Scholar 

  137. Chen Z, Orlowski RZ, Wang M, Kwak L, McCarty N (2014) Osteoblastic niche supports the growth of quiescent multiple myeloma cells. Blood 123:2204–2208

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  138. McDonald M, Lawson M, Kovacic N, Terry R, Khoo WH, Down J, Pettitt J, Quinn J, Pettit A, Phan T et al (2015) Bone cells control myeloma cell dormancy and activation in the skeleton. IBMS BoneKEy 13:673

    Google Scholar 

  139. Takeuchi K, Abe M, Hiasa M, Oda A, Amou H, Kido S, Harada T, Tanaka O, Miki H, Nakamura S et al (2010) Tgf-Beta inhibition restores terminal osteoblast differentiation to suppress myeloma growth. PLoS One 5, e9870

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Yaccoby S, Wezeman MJ, Zangari M, Walker R, Cottler-Fox M, Gaddy D, Ling W, Saha R, Barlogie B, Tricot G et al (2006) Inhibitory effects of osteoblasts and increased bone formation on myeloma in novel culture systems and a myelomatous mouse model. Haematologica 91:192–199

    PubMed  CAS  PubMed Central  Google Scholar 

  141. Li X, Pennisi A, Yaccoby S (2008) Role of decorin in the antimyeloma effects of osteoblasts. Blood 112:159–168

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  142. Kristensen IB, Pedersen L, Ro TB, Christensen JH, Lyng MB, Rasmussen LM, Ditzel HJ, Borset M, Abildgaard N (2013) Decorin is down-regulated in multiple myeloma and MGUS bone marrow plasma and inhibits HGF-induced myeloma plasma cell viability and migration. Eur J Haematol 91:196–200

    Article  PubMed  Google Scholar 

  143. Kramer I, Halleux C, Keller H, Pegurri M, Gooi JH, Weber PB, Feng JQ, Bonewald LF, Kneissel M (2010) Osteocyte Wnt/beta-catenin signaling is required for normal bone homeostasis. Mol Cell Biol 30:3071–3085

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  144. Eisenberger S, Ackermann K, Voggenreiter G, Sultmann H, Kasperk C, Pyerin W (2008) Metastases and multiple myeloma generate distinct transcriptional footprints in osteocytes in vivo. J Pathol 214:617–626

    Article  PubMed  CAS  Google Scholar 

  145. Giuliani N, Ferretti M, Bolzoni M, Storti P, Lazzaretti M, Dalla Palma B, Bonomini S, Martella E, Agnelli L, Neri A et al (2012) Increased osteocyte death in multiple myeloma patients: role in myeloma-induced osteoclast formation. Leukemia 26:1391–1401

    Article  PubMed  CAS  Google Scholar 

  146. Roelofs AJ, Coxon FP, Ebetino FH, Lundy MW, Henneman ZJ, Nancollas GH, Sun S, Blazewska KM, Bala JL, Kashemirov BA et al (2010) Fluorescent risedronate analogues reveal bisphosphonate uptake by bone marrow monocytes and localization around osteocytes in vivo. J Bone Miner Res 25:606–616

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  147. Plotkin LI, Weinstein RS, Parfitt AM, Roberson PK, Manolagas SC, Bellido T (1999) Prevention of osteocyte and osteoblast apoptosis by bisphosphonates and calcitonin. J Clin Invest 104:1363–1374

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  148. Liu Y, Song CY, Wu SS, Liang QH, Yuan LQ, Liao EY (2013) Novel adipokines and bone metabolism. Int J Endocrinol 2013 Article ID 895045

  149. Nieman KM, Romero IL, Van Houten B, Lengyel E (2013) Adipose tissue and adipocytes support tumorigenesis and metastasis. Biochim Biophys Acta 1831:1533–1541

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  150. Caers J, Deleu S, Belaid Z, De Raeve H, Van Valckenborgh E, De Bruyne E, Defresne MP, Van Riet I, Van Camp B, Vanderkerken K (2007) Neighboring adipocytes participate in the bone marrow microenvironment of multiple myeloma cells. Leukemia 21:1580–1584

    Article  PubMed  CAS  Google Scholar 

  151. Vicennati V, Vottero A, Friedman C, Papanicolaou DA (2002) Hormonal regulation of interleukin-6 production in human adipocytes. Int J Obes Relat Metab Disord 26:905–911

    Article  PubMed  CAS  Google Scholar 

  152. Carson KR, Bates ML, Tomasson MH (2014) The skinny on obesity and plasma cell myeloma: a review of the literature. Bone Marrow Transplant 49:1009–1015

    Article  PubMed  CAS  Google Scholar 

  153. Esheba NE, Shahba A, El Shora O (2014) Assessment of leptin and resistin levels in non-obese multiple myeloma patients and their relation with Ig level and disease stage. J Egypt Natl Canc Inst 26:61–66

    Article  PubMed  Google Scholar 

  154. Medina EA, Oberheu K, Polusani SR, Ortega V, Velagaleti GV, Oyajobi BO (2014) PKA/AMPK signaling in relation to adiponectin’s antiproliferative effect on multiple myeloma cells. Leukemia 28:2080–2089

    Article  PubMed  CAS  Google Scholar 

  155. Fowler JA, Lwin ST, Drake MT, Edwards JR, Kyle RA, Mundy GR, Edwards CM (2011) Host-derived adiponectin is tumor-suppressive and a novel therapeutic target for multiple myeloma and the associated bone disease. Blood 118:5872–5882

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  156. Lwin ST, Olechnowicz SW, Fowler JA, Edwards CM (2015) Diet-induced obesity promotes a myeloma-like condition in vivo. Leukemia 29:507–510

    Article  PubMed  CAS  Google Scholar 

  157. Beason TS, Chang SH, Sanfilippo KM, Luo S, Colditz GA, Vij R, Tomasson MH, Dipersio JF, Stockerl-Goldstein K, Ganti A et al (2013) Influence of body mass index on survival in veterans with multiple myeloma. Oncologist 18:1074–1079

    Article  PubMed  PubMed Central  Google Scholar 

  158. Rajkumar SV, Landgren O, Mateos MV (2015) Smoldering multiple myeloma. Blood 125(20):3069–3075

    Article  PubMed  CAS  Google Scholar 

  159. Mateos MV, San Miguel JF (2015) Smoldering multiple myeloma: when to observe and when to treat. Am Soc Clin Oncol Educ Book 35:e484–e492

    Article  Google Scholar 

  160. Kristinsson SY, Tang M, Pfeiffer RM, Björkholm M, Blimark C, Mellqvist UH, Wahlin A, Turesson I, Landgren O (2010) Monoclonal gammopathy of undetermined significance and risk of skeletal fractures: a population-based study. Blood 116:2651–2655

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  161. Psaila B, Lyden D (2009) The metastatic niche: adapting the foreign soil. Nat Rev Cancer 9:285–293

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  162. Ghobrial IM (2012) Myeloma as a model for the process of metastasis: implications for therapy. Blood 120:20–30

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  163. Uchiyama H, Barut BA, Mohrbacher AF, Chauhan D, Anderson KC (1993) Adhesion of human myeloma-derived cell lines to bone marrow stromal cells stimulates interleukin-6 secretion. Blood 82:3712–3720

    PubMed  CAS  Google Scholar 

  164. Michigami T, Shimizu N, Williams PJ, Niewolna M, Dallas SL, Mundy GR, Yoneda (2000) Cell-cell contact between marrow stromal cells and myeloma cells via VCAM-1 and alpha(4)beta(1)-integrin enhances production of osteoclast-stimulating activity. Blood 96:1953–1960

    PubMed  CAS  Google Scholar 

  165. Teoh G, Anderson KC (1997) Interaction of tumor and host cells with adhesion and extracellular matrix molecules in the development of multiple myeloma. Hematol Oncol Clin North Am 11:27–42

    Article  PubMed  CAS  Google Scholar 

  166. Pant S, Hilton H, Burczynski ME (2012) The multifaceted exosome: biogenesis, role in normal and aberrant cellular function, and frontiers for pharmacological and biomarker opportunities. Biochem Pharmacol 83:1484–1494

    Article  PubMed  CAS  Google Scholar 

  167. Raimondi L, De Luca A, Amodio N, Manno M, Raccosta S, Taverna S, Bellavia D, Naselli F, Fontana S, Schillaci O et al (2015) Involvement of multiple myeloma cell-derived exosomes in osteoclast differentiation. Oncotarget 6(15):13772–13789

    Article  PubMed  PubMed Central  Google Scholar 

  168. Roccaro AM, Sacco A, Maiso P, Azab AK, Tai YT, Reagan M, Azab F, Flores LM, Campigotto F, Weller E et al (2013) BM mesenchymal stromal cell-derived exosomes facilitate multiple myeloma progression. J Clin Invest 123:1542–1555

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  169. Wang J, Hendrix A, Hernot S, Lemaire M, De Bruyne E, Van Valckenborgh E, Lahoutte T, De Wever O, Vanderkerken K, Menu E (2014) Bone marrow stromal cell-derived exosomes as communicators in drug resistance in multiple myeloma cells. Blood 124:555–566

    Article  PubMed  CAS  Google Scholar 

  170. Varettoni M, Corso A, Pica G, Mangiacavalli S, Pascutto C, Lazzarino M (2010) Incidence, presenting features and outcome of extramedullary disease in multiple myeloma: a longitudinal study on 1003 consecutive patients. Ann Oncol 21:325–330

    Article  PubMed  CAS  Google Scholar 

  171. Blade J, Fernandez de Larrea C, Rosinol L (2015) Extramedullary disease in multiple myeloma in the era of novel agents. Br J Haematol 169(6):843–850

    Article  CAS  Google Scholar 

  172. Bladé J, Fernández de Larrea C, Rosiñol L, Cibeira MT, Jiménez R, Powles R (2011) Soft-tissue plasmacytomas in multiple myeloma: incidence, mechanisms of extramedullary spread, and treatment approach. J Clin Oncol 29:3805–3812

    Article  PubMed  Google Scholar 

  173. Usmani SZ, Heuck C, Mitchell A, Szymonifka J, Nair B, Hoering A, Alsayed Y, Waheed S, Haider S, Restrepo A et al (2012) Extramedullary disease portends poor prognosis in multiple myeloma and is over-represented in high-risk disease even in the era of novel agents. Haematologica 97:1761–1767

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported in part by R21CA191981 (CCL & LH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. C. Lynch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shay, G., Hazlehurst, L. & Lynch, C.C. Dissecting the multiple myeloma-bone microenvironment reveals new therapeutic opportunities. J Mol Med 94, 21–35 (2016). https://doi.org/10.1007/s00109-015-1345-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-015-1345-4

Keywords

Navigation