Skip to main content

Advertisement

Log in

The calcineurin–NFAT pathway allows for urokinase receptor-mediated beta3 integrin signaling to cause podocyte injury

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

An Erratum to this article was published on 23 October 2012

Abstract

Circulating and podocyte-bound urokinase receptor (uPAR) is a mediator of podocyte injury, proteinuria, and focal segmental glomerulosclerosis (FSGS) allowing pathological activation of the uPAR-β3 integrin signaling axis. Clinically, calcineurin inhibitors (e.g., cyclosporine A, CsA) are known to suppress T cells, yet are also being used to reduce proteinuria in FSGS, suggesting the possibility of signal cross talk between uPAR and calcineurin. Calcineurin is known to facilitate the nuclear translocation of the nuclear factor of activated T cells (NFAT). Accordingly, in vivo conditional NFATc1 activation in podocytes leads to proteinuria in mice, yet the downstream targets of NFAT remain unclear. Here, we show that inducible podocyte-specific expression of constitutively active NFATc1 increased podocyte uPAR expression by binding to the Plaur gene promoter (encoding uPAR) in chromatin immunoprecipitation assays. Pathological uPAR signals in podocytes are independent of T cells and affect cell motility via activation, but not expression, changes of the β3 integrin and can be blocked by CsA, NFAT-siRNA, or the cell-permeable NFAT inhibitor (11R-VIVIT) using rodent models of glomerular disease (LPS; 5/6 nephrectomized rats). Taken together, these findings identify podocyte uPAR as a downstream target of NFAT and provide further insights into the pathogenesis of FSGS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zandi-Nejad K, Eddy AA, Glassock RJ, Brenner BM (2004) Why is proteinuria an ominous biomarker of progressive kidney disease? Kidney Int Suppl (92):S76–S89

  2. Pavenstadt H, Kriz W, Kretzler M (2003) Cell biology of the glomerular podocyte. Physiol Rev 83:253–307

    PubMed  CAS  Google Scholar 

  3. Reiser J, Oh J, Shirato I, Asanuma K, Hug A, Mundel TM, Honey K, Ishidoh K, Kominami E, Kreidberg JA et al (2004) Podocyte migration during nephritic syndrome requires a coordinated interplay between cathepsin L and alpha3 integrin. J Biol Chem 279:34827–34832

    Article  PubMed  CAS  Google Scholar 

  4. Wei C, Möller CC, Altintas MM, Li J, Schwarz K, Zacchigna S, Xie L, Henger A, Schmid H, Rastaldi MP et al (2008) Modification of kidney barrier function by the urokinase receptor. Nat Med 14:55–63

    Article  PubMed  CAS  Google Scholar 

  5. Blasi F, Carmeliet P (2002) uPAR: a versatile signalling orchestrator. Nat Rev Mol Cell Biol 3:932–943

    Article  PubMed  CAS  Google Scholar 

  6. Wei C, El Hindi S, Li J, Fornoni A, Goes N, Sageshima J, Maiguel D, Karumanchi SA, Yap HK, Saleem M et al (2011) Circulating urokinase receptor as a cause of focal segmental glomerulosclerosis. Nat Med 17:952–960

    Article  PubMed  CAS  Google Scholar 

  7. Zhang B, Xie S, Shi W, Yang Y (2012) Amiloride off-target effect inhibits podocyte urokinase receptor expression and reduces proteinuria. Nephrol Dial Transplant 27:1746–1755. doi:10.1093/ndt/gfr612

    Article  PubMed  CAS  Google Scholar 

  8. Crabtree GR, Olson EN (2002) NFAT signaling: choreographing the social lives of cells. Cell 109(Suppl):S67–S79

    Article  PubMed  CAS  Google Scholar 

  9. Faul C, Donnelly M, Merscher-Gomez S, Chang YH, Franz S, Delfgaauw J, Chang JM, Choi HY, Campbell KN, Kim K et al (2008) The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A. Nat Med 14:931–938

    Article  PubMed  CAS  Google Scholar 

  10. Wang Y, Jarad G, Tripathi P, Pan M, Cunningham J, Martin DR, Liapis H, Miner JH, Chen F (2010) Activation of NFAT signaling in podocytes causes glomerulosclerosis. J Am Soc Nephrol 21:1657–1666

    Article  PubMed  CAS  Google Scholar 

  11. Nijenhuis T, Sloan AJ, Hoenderop JG, Flesche J, van Goor H, Kistler AD, Bakker M, Bindels RJ, de Boer RA, Möller CC et al (2011) Angiotensin II contributes to podocyte injury by increasing TRPC6 expression via an NFAT-mediated positive feedback signaling pathway. Am J Pathol 179:1719–1732

    Article  PubMed  CAS  Google Scholar 

  12. Reiser J, von Gersdorff G, Loos M, Oh J, Asanuma K, Giardino L, Rastaldi MP, Calvaresi N, Watanabe H, Schwarz K et al (2004) Induction of B7-1 in podocytes is associated with nephrotic syndrome. J Clin Invest 113:1390–1397

    PubMed  CAS  Google Scholar 

  13. Beals CR, Clipstone NA, Ho SN, Crabtree GR (1997) Nuclear localization of NF-ATc by a calcineurin-dependent, cyclosporin-sensitive intramolecular interaction. Genes Dev 11:824–834

    Article  PubMed  CAS  Google Scholar 

  14. Schwarz K, Simons M, Reiser J, Saleem MA, Faul C, Kriz W, Shaw AS, Holzman LB, Mundel P (2001) Podocin, a raft-associated component of the glomerular slit diaphragm, interacts with CD2AP and nephrin. J Clin Invest 108:1621–1629

    PubMed  CAS  Google Scholar 

  15. Noguchi H, Matsushita M, Okitsu T, Moriwaki A, Tomizawa K, Kang S, Li ST, Kobayashi N, Matsumoto S, Tanaka K et al (2004) A new cell-permeable peptide allows successful allogeneic islet transplantation in mice. Nat Med 10:305–309

    Article  PubMed  CAS  Google Scholar 

  16. Klein M, Klein-Hessling S, Palmetshofer A, Serfling E, Tertilt C, Bopp T, Heib V, Becker M, Taube C, Schild H et al (2006) Specific and redundant roles for NFAT transcription factors in the expression of mast cell-derived cytokines. J Immunol 177:6667–6674

    PubMed  CAS  Google Scholar 

  17. Høyer-Hansen G, Rønne E, Solberg H, Behrendt N, Ploug M, Lund LR, Ellis V, Danø K (1992) Urokinase plasminogen activator cleaves its cell surface receptor releasing the ligand-binding domain. J Biol Chem 267:18224–18229

    PubMed  Google Scholar 

  18. Pass J, Jögi A, Lund IK, Rønø B, Rasch MG, Gårdsvoll H, Lund LR, Ploug M, Rømer J, Danø K et al (2007) Murine monoclonal antibodies against murine uPA receptor produced in gene-deficient mice: inhibitory effects on receptor-mediated uPA activity in vitro and in vivo. Thromb Haemost 97:1013–1022

    PubMed  CAS  Google Scholar 

  19. Kuhlmann A, Haas CS, Gross ML, Reulbach U, Holzinger M, Schwarz U, Ritz E, Amann K (2004) 1,25-Dihydroxyvitamin D3 decreases podocyte loss and podocyte hypertrophy in the subtotally nephrectomized rat. Am J Physiol Renal Physiol 286:F526–F533

    Article  PubMed  CAS  Google Scholar 

  20. Amann K, Nichols C, Tornig J, Schwarz U, Zeier M, Mall G, Ritz E (1996) Effect of ramipril, nifedipine, and moxonidine on glomerular morphology and podocyte structure in experimental renal failure. Nephrol Dial Transplant 11:1003–1011

    Article  PubMed  CAS  Google Scholar 

  21. Bosma GC, Custer RP, Bosma MJ (1983) A severe combined immunodeficiency mutation in the mouse. Nature 301:527–530

    Article  PubMed  CAS  Google Scholar 

  22. Sever S, Altintas MM, Nankoe SR, Möller CC, Ko D, Wei C, Henderson J, del Re EC, Hsing L, Erickson A et al (2007) Proteolytic processing of dynamin by cytoplasmic cathepsin L is a mechanism for proteinuric kidney disease. J Clin Invest 117:2095–2104

    Article  PubMed  CAS  Google Scholar 

  23. Comper WD (2009) Is the LPS-mediated proteinuria mouse model relevant to human kidney disease? Nat Med 15:133–134

    Article  PubMed  CAS  Google Scholar 

  24. Yaddanapudi S, Altintas MM, Kistler AD, Fernandez I, Möller CC, Wei C, Peev V, Flesche JB, Forst AL, Li J et al (2011) CD2AP in mouse and human podocytes controls a proteolytic program that regulates cytoskeletal structure and cellular survival. J Clin Invest 121:3965–3980

    Article  PubMed  CAS  Google Scholar 

  25. Degryse B, Resnati M, Czekay RP, Loskutoff DJ, Blasi F (2005) Domain 2 of the urokinase receptor contains an integrin-interacting epitope with intrinsic signaling activity: generation of a new integrin inhibitor. J Biol Chem 280:24792–24803

    Article  PubMed  CAS  Google Scholar 

  26. Pelletier AJ, Kunicki T, Quaranta V (1996) Activation of the integrin alpha v beta 3 involves a discrete cation-binding site that regulates conformation. J Biol Chem 271:1364–1370

    Article  PubMed  CAS  Google Scholar 

  27. Asanuma K, Yanagida-Asanuma E, Faul C, Tomino Y, Kim K, Mundel P (2006) Synaptopodin orchestrates actin organization and cell motility via regulation of RhoA signalling. Nat Cell Biol 8:485–491

    Article  PubMed  CAS  Google Scholar 

  28. Jauliac S, López-Rodriguez C, Shaw LM, Brown LF, Rao A, Toker A (2002) The role of NFAT transcription factors in integrin-mediated carcinoma invasion. Nat Cell Biol 4:540–544

    Article  PubMed  CAS  Google Scholar 

  29. Datta A, David R, Glennie S, Scott D, Cernuda-Morollon E, Lechler RI, Ridley AJ, Marelli-Berg FM (2006) Differential effects of immunosuppressive drugs on T-cell motility. Am J Transplant 6:2871–2883

    Article  PubMed  CAS  Google Scholar 

  30. Winslow MM, Pan M, Starbuck M, Gallo EM, Deng L, Karsenty G, Crabtree GR (2006) Calcineurin/NFAT signaling in osteoblasts regulates bone mass. Dev Cell 10:771–782

    Article  PubMed  CAS  Google Scholar 

  31. Pan M, Winslow MM, Chen L, Kuo A, Felsher D, Crabtree GR (2007) Enhanced NFATc1 nuclear occupancy causes T cell activation independent of CD28 costimulation. J Immunol 178:4315–4321

    PubMed  CAS  Google Scholar 

  32. Heit JJ, Apelqvist AA, Gu X, Winslow MM, Neilson JR, Crabtree GR, Kim SK (2006) Calcineurin/NFAT signalling regulates pancreatic beta-cell growth and function. Nature 443:345–349

    Article  PubMed  CAS  Google Scholar 

  33. Okan E, Drewett V, Shaw PE, Jones P (2001) The small-GTPase RalA activates transcription of the urokinase plasminogen activator receptor (uPAR) gene via an AP1-dependent mechanism. Oncogene 20:1816–1824

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Guangdong Science & Technology Department and in part by grants from the National Institute of Health (DK073495 and DK089394 to Dr. Reiser). We thank Dr. P Mundel (Massachusetts General Hospital, Boston, USA) for providing conditionally immortalized mouse podocytes.

Disclosures

Jochen Reiser and Changli Wei are inventors on pending and issued patents on the development of novel therapeutics for proteinuric kidney diseases. They stand to gain royalties from their commercialization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Shi.

Additional information

Bin Zhang, Juan Ma, and Yun Yang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 598 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, B., Shi, W., Ma, J. et al. The calcineurin–NFAT pathway allows for urokinase receptor-mediated beta3 integrin signaling to cause podocyte injury. J Mol Med 90, 1407–1420 (2012). https://doi.org/10.1007/s00109-012-0960-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-012-0960-6

Keywords

Navigation