Skip to main content

Advertisement

Log in

Transferrin-receptor-mediated iron accumulation controls proliferation and glutamate release in glioma cells

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Transferrin receptors (TfR) are overexpressed in brain tumors, but the pathological relevance has not been fully explored. Here, we show that TfR is an important downstream effector of ets transcription factors that promotes glioma proliferation and increases glioma-evoked neuronal death. TfR mediates iron accumulation and reactive oxygen formation and thereby enhanced proliferation in clonal human glioma lines, as shown by the following experiments: (1) downregulating TfR expression reduced proliferation in vitro and in vivo; (2) forced TfR expression in low-grade glioma accelerated proliferation to the level of high-grade glioma; (3) iron and oxidant chelators attenuated tumor proliferation in vitro and tumor size in vivo. TfR-induced oxidant accumulation modified cellular signaling by inactivating a protein tyrosine phosphatase (low-molecular-weight protein tyrosine phosphatase), activating mitogen-activated protein kinase and Akt and by inactivating p21/cdkn1a and pRB. Inactivation of these cell cycle regulators facilitated S-phase entry. Besides its effect on proliferation, TfR also boosted glutamate release, which caused N-methyl-d-aspartate-receptor-mediated reduction of neuron cell mass. Our results indicate that TfR promotes glioma progression by two mechanisms, an increase in proliferation rate and glutamate production, the latter mechanism providing space for the progressing tumor mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Terada LS (2006) Specificity in reactive oxidant signaling: think globally, act locally. J Cell Biol 174(5):615–623

    Article  PubMed  CAS  Google Scholar 

  2. Veal EA, Day AM, Morgan BA (2007) Hydrogen peroxide sensing and signaling. Mol Cell 26(1):1–14

    Article  PubMed  CAS  Google Scholar 

  3. Hussain SP, Hofseth LJ, Harris CC (2003) Radical causes of cancer. Nat Rev Cancer 3(4):276–285

    Article  PubMed  CAS  Google Scholar 

  4. Martin V, Herrera F, Garcia-Santos G, Antolin I, Rodriguez-Blanco J, Rodriguez C (2007) Signaling pathways involved in antioxidant control of glioma cell proliferation. Free Radic Biol Med 42(11):1715–1722

    Article  PubMed  CAS  Google Scholar 

  5. Kleihues P, Burger PC, Scheithauer BW (1996) Histological typing of the tumours of the central nervous system, 2nd edn. Springer, Stuttgart

    Google Scholar 

  6. Holland EC (2000) Glioblastoma multiforme: the terminator. Proc Natl Acad Sci USA 97(12):6242–6244

    Article  PubMed  CAS  Google Scholar 

  7. Holland EC (2001) Gliomagenesis: genetic alterations and mouse models. Nat Rev Genet 2(2):120–129

    Article  PubMed  CAS  Google Scholar 

  8. Takano T, Lin JH, Arcuino G, Gao Q, Yang J, Nedergaard M (2001) Glutamate release promotes growth of malignant gliomas. Nat Med 7(9):1010–1015

    Article  PubMed  CAS  Google Scholar 

  9. Sontheimer H (2003) Malignant gliomas: perverting glutamate and ion homeostasis for selective advantage. Trends Neurosci 26(10):543–549

    Article  PubMed  CAS  Google Scholar 

  10. Recht L, Torres CO, Smith TW, Raso V, Griffin TW (1990) Transferrin receptor in normal and neoplastic brain tissue: implications for brain-tumor immunotherapy. J Neurosurg 72(6):941–945

    Article  PubMed  CAS  Google Scholar 

  11. Richardson DR (2002) Iron chelators as therapeutic agents for the treatment of cancer. Crit Rev Oncol Hematol 42(3):267–281

    Article  PubMed  CAS  Google Scholar 

  12. Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR (2004) Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 5(11):863–873

    Article  PubMed  CAS  Google Scholar 

  13. Cavanaugh PG, Jia L, Zou Y, Nicolson GL (1999) Transferrin receptor overexpression enhances transferrin responsiveness and the metastatic growth of a rat mammary adenocarcinoma cell line. Breast Cancer Res Treat 56(3):203–217

    Article  PubMed  CAS  Google Scholar 

  14. Sieweke MH, Tekotte H, Frampton J, Graf T (1996) MafB is an interaction partner and repressor of Ets-1 that inhibits erythroid differentiation. Cell 85(1):49–60

    Article  PubMed  CAS  Google Scholar 

  15. Marziali G, Perrotti E, Ilari R, Lulli V, Coccia EM, Moret R, Kuhn LC, Testa U, Battistini A (2002) Role of Ets-1 in transcriptional regulation of transferrin receptor and erythroid differentiation. Oncogene 21(52):7933–7944

    Article  PubMed  CAS  Google Scholar 

  16. Owen D, Kuhn LC (1987) Noncoding 3′ sequences of the transferrin receptor gene are required for mRNA regulation by iron. Embo J 6(5):1287–1293

    PubMed  CAS  Google Scholar 

  17. Sharrocks AD (2001) The ETS-domain transcription factor family. Nat Rev Mol Cell Biol 2(11):827–837

    Article  PubMed  CAS  Google Scholar 

  18. Kitange G, Kishikawa M, Nakayama T, Naito S, Iseki M, Shibata S (1999) Expression of the Ets-1 proto-oncogene correlates with malignant potential in human astrocytic tumors. Mod Pathol 12(6):618–626

    PubMed  CAS  Google Scholar 

  19. Dittmer J (2003) The biology of the Ets1 proto-oncogene. Mol Cancer 2:29

    Article  PubMed  Google Scholar 

  20. Kita D, Takino T, Nakada M, Takahashi T, Yamashita J, Sato H (2001) Expression of dominant-negative form of Ets-1 suppresses fibronectin-stimulated cell adhesion and migration through down-regulation of integrin alpha5 expression in U251 glioma cell line. Cancer Res 61(21):7985–7991

    PubMed  CAS  Google Scholar 

  21. Meier J, Grantyn R (2004) A gephyrin-related mechanism restraining glycine receptor anchoring at GABAergic synapses. J Neurosci 246:1398–1405

    Article  CAS  Google Scholar 

  22. Ferrer I (1999) Neurons and their dendrites in frontotemporal dementia. Dement Geriatr Cogn Disord 10(Suppl 1):55–60

    Article  PubMed  Google Scholar 

  23. Eichler SA, Kirischuk S, Juttner R, Legendre P, Lehmann TN, Gloveli T, Grantyn R, Meier JC (2008) Glycinergic tonic inhibition of hippocampal neurons with depolarising GABAergic transmission elicits histopathological signs of temporal lobe epilepsy. J Cell Mol Med doi:10.1111/j.1582-4934.2008.00357.x

  24. Castegna A, Aksenov M, Aksenova M, Thongboonkerd V, Klein JB, Pierce WM, Booze R, Markesbery WR, Butterfield DA (2002) Proteomic identification of oxidatively modified proteins in Alzheimer's disease brain. Part I: creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1. Free Radic Biol Med 33(4):562–571

    Article  PubMed  CAS  Google Scholar 

  25. Petrat F, de Groot H, Rauen U (2001) Subcellular distribution of chelatable iron: a laser scanning microscopic study in isolated hepatocytes and liver endothelial cells. Biochem J 356(Pt 1):61–69

    Article  PubMed  CAS  Google Scholar 

  26. Geran RI, Greenberg NH, Macdonald MM, Abbott BJ (1977) Modified protocol for the testing of new synthetics in the L1210 lymphoid leukemia murine model in the DR&D program, DCT, NCI. Natl Cancer Inst Monogr 45:151–153

    PubMed  Google Scholar 

  27. Nakada M, Yamashita J, Okada Y, Sato H (1999) Ets-1 positively regulates expression of urokinase-type plasminogen activator (uPA) and invasiveness of astrocytic tumors. J Neuropathol Exp Neurol 58(4):329–334

    Article  PubMed  CAS  Google Scholar 

  28. Sun HL, Liu YN, Huang YT, Pan SL, Huang DY, Guh JH, Lee FY, Kuo SC, Teng CM (2007) YC-1 inhibits HIF-1 expression in prostate cancer cells: contribution of Akt/NF-kappaB signaling to HIF-1alpha accumulation during hypoxia. Oncogene 26:3941–3951

    Article  PubMed  CAS  Google Scholar 

  29. Mattia CJ, Adams JD Jr, Bondy SC (1993) Free radical induction in the brain and liver by products of toluene catabolism. Biochem Pharmacol 46(1):103–110

    Article  PubMed  CAS  Google Scholar 

  30. Chiarugi P, Taddei ML, Schiavone N, Papucci L, Giannoni E, Fiaschi T, Capaccioli S, Raugei G, Ramponi G (2004) LMW-PTP is a positive regulator of tumor onset and growth. Oncogene 23(22):3905–3914

    Article  PubMed  CAS  Google Scholar 

  31. Ostman A, Hellberg C, Bohmer FD (2006) Protein-tyrosine phosphatases and cancer. Nat Rev Cancer 6(4):307–320

    Article  PubMed  CAS  Google Scholar 

  32. Giannoni E, Raugei G, Chiarugi P, Ramponi G (2006) A novel redox-based switch: LMW-PTP oxidation enhances Grb2 binding and leads to ERK activation. Biochem Biophys Res Commun 348(2):367–373

    Article  PubMed  CAS  Google Scholar 

  33. Martin V, Herrera F, Carrera-Gonzalez P, Garcia-Santos G, Antolin I, Rodriguez-Blanco J, Rodriguez C (2006) Intracellular signaling pathways involved in the cell growth inhibition of glioma cells by melatonin. Cancer Res 66(2):1081–1088

    Article  PubMed  CAS  Google Scholar 

  34. Nath N, Wang S, Betts V, Knudsen E, Chellappan S (2003) Apoptotic and mitogenic stimuli inactivate Rb by differential utilization of p38 and cyclin-dependent kinases. Oncogene 22(38):5986–5994

    Article  PubMed  CAS  Google Scholar 

  35. Zhou BP, Liao Y, Xia W, Spohn B, Lee MH, Hung MC (2001) Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells. Nat Cell Biol 3(3):245–252

    Article  PubMed  CAS  Google Scholar 

  36. Szatmari T, Lumniczky K, Desaknai S, Trajcevski S, Hidvegi EJ, Hamada H, Safrany G (2006) Detailed characterization of the mouse glioma 261 tumor model for experimental glioblastoma therapy. Cancer Sci 97(6):546–553

    Article  PubMed  CAS  Google Scholar 

  37. Hentze MW, Kuhn LC (1996) Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proc Natl Acad Sci USA 93(16):8175–8182

    Article  PubMed  CAS  Google Scholar 

  38. McGahan MC, Harned J, Mukunnemkeril M, Goralska M, Fleisher L, Ferrell JB (2005) Iron alters glutamate secretion by regulating cytosolic aconitase activity. Am J Physiol Cell Physiol 288(5):C1117–C1124

    Article  PubMed  CAS  Google Scholar 

  39. Segerer S, Eitner F, Cui Y, Hudkins KL, Alpers CE (2002) Cellular injury associated with renal thrombotic microangiopathy in human immunodeficiency virus-infected macaques. J Am Soc Nephrol 13(2):370–378

    PubMed  Google Scholar 

  40. Xing K, Raza A, Lofgren S, Fernando MR, Ho YS, Lou MF (2007) Low molecular weight protein tyrosine phosphatase (LMW-PTP) and its possible physiological functions of redox signaling in the eye lens. Biochim Biophys Acta 1774(5):545–555

    PubMed  CAS  Google Scholar 

  41. Pandey SK, Yu XX, Watts LM, Michael MD, Sloop KW, Rivard AR, Leedom TA, Manchem VP, Samadzadeh L, McKay RA, Monia BP, Bhanot S (2007) Reduction of low molecular weight protein-tyrosine phosphatase expression improves hyperglycemia and insulin sensitivity in obese mice. J Biol Chem 282(19):14291–14299

    Article  PubMed  CAS  Google Scholar 

  42. Suyama H, Igishi T, Sano H, Matsumoto S, Shigeoka Y, Nakanishi H, Endo M, Burioka N, Hitsuda Y, Shimizu E (2004) ERK activation and subsequent RB phosphorylation are important determinants of the sensitivity to paclitaxel in lung adenocarcinoma cells. Int J Oncol 24(6):1499–1504

    PubMed  CAS  Google Scholar 

  43. Fernandes DJ, Ravenhall CE, Harris T, Tran T, Vlahos R, Stewart AG (2004) Contribution of the p38MAPK signalling pathway to proliferation in human cultured airway smooth muscle cells is mitogen-specific. Br J Pharmacol 142(7):1182–1190

    Article  PubMed  CAS  Google Scholar 

  44. Renton FJ, Jeitner TM (1996) Cell cycle-dependent inhibition of the proliferation of human neural tumor cell lines by iron chelators. Biochem Pharmacol 51(11):1553–1561

    Article  PubMed  CAS  Google Scholar 

  45. Jeitner TM, Renton FJ (1996) Inhibition of the proliferation of human neural neoplastic cell lines by cysteamine. Cancer Lett 103(1):85–90

    Article  PubMed  CAS  Google Scholar 

  46. Basset P, Zwiller J, Revel MO, Vincendon G (1985) Growth promotion of transformed cells by iron in serum-free culture. Carcinogenesis 6(3):355–359

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. L. Kühn (ISREC, Epalinges, Switzerland), Dr. M Gossen (Max Delbrück Center, Berlin, Germany), and Dr. H. Sato (Kanazawa University; Kanzawa, Japan) for providing us with expression plasmids.

The research was supported by Bundesministerium für Forschung und Technologie (H. K.); J.C.M and S.A.E. were financed by grants from the DFG (ME2075/3-1 and Sonderforschungsbereich Grant TR3/B5 to JCM) and Helmholtz Association (VH-NG-246 to JCM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Glass.

Additional information

H. Kettenmann and R. Glass contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 169 kb)

ESM 2

(PDF 848 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chirasani, S.R., Markovic, D.S., Synowitz, M. et al. Transferrin-receptor-mediated iron accumulation controls proliferation and glutamate release in glioma cells. J Mol Med 87, 153–167 (2009). https://doi.org/10.1007/s00109-008-0414-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-008-0414-3

Keywords

Navigation