Skip to main content
Log in

Association of a polymorphism in the betacellulin gene with type 1 diabetes mellitus in two populations

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Betacellulin, a member of the epidermal growth factor family, is expressed in fetal and adult pancreas. In vitro and in vivo studies suggest a role for betacellulin in islet neogenesis and regeneration. Therefore, a mutation in the betacellulin gene might lead to fewer beta cells. With reduced beta cell reserve, beta cells may not be able to compensate for an autoimmune attack, and in turn, susceptibility to type 1 diabetes mellitus (T1DM) would increase. Previous mutational analysis identified seven polymorphisms in the betacellulin gene [5′ UT (−233G>C, −226A>G), exon 1 (TGC19GGC, Cys7Gly), exon 2 (CTC130TTC, Leu44Phe), exon 4 (TTG370ATG, Leu124Met), intron 2 (-31T>C), and intron 4 (-4C>T)]. An association study of these variants with T1DM was first carried out in 100 Caucasian subjects with T1DM and 282 Caucasian subjects without diabetes recruited at the University of Maryland. The frequency of the intron 4 T-4 allele was significantly higher among nondiabetic controls than that among diabetic cases (0.29 vs 0.21, p=0.04). Allele frequencies for the other polymorphisms did not differ significantly between cases and controls. The intron 4 T-4 association was then replicated by transmission disequilibrium testing in a separate population of Caucasian parent/offspring with T1DM trios (n=168 trios, 113 informative) recruited at the Medical College of Wisconsin (p=0.024). An interaction of the intron 4 T-4 allele and human leukocyte antigen (HLA) was also detected with undertransmission of the T allele in those T1DM subjects with susceptible HLA types as compared to those T1DM subjects without susceptible HLA types (p=0.018). RNA studies of the intron T-4 variant showed similar RNA levels for intron 4 T-4 and intron 4 C-4 alleles. Additionally, there was no evidence for an effect of this variant on exon–intron splicing. We conclude that the intron 4 T-4 allele in the betacellulin gene is associated with lower risk of T1DM and may interact with HLA. Further studies will be necessary to establish the significance of this association.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

bp:

Base pair

EGF:

Epidermal growth factor

RFLP:

Restriction fragment length polymorphism

SSCP:

Single-stranded conformational polymorphism

T1DM:

Type 1 diabetes mellitus

T2DM:

Type 2 diabetes mellitus

5′UT:

5′ Untranslated region

3′UT:

3′ Untranslated region

References

  1. Bonner-Weir S, Baxter LA, Schuppin GT, Smith FE (1993) A second pathway for regeneration of adult exocrine and endocrine pancreas. A possible recapitulation of embryonic development. Diabetes 42:1715–1720

    Article  PubMed  CAS  Google Scholar 

  2. Kaung HL (1994) Growth dynamics of pancreatic islet cell populations during fetal and neonatal development of the rat. Dev Dyn 200:163–175

    PubMed  CAS  Google Scholar 

  3. Hellerstrom C (1984) The life story of the pancreatic B cell. Diabetologia 26:393–400

    Article  PubMed  CAS  Google Scholar 

  4. Massa L, Del Zotto H, Gomez Dumm CL, Gagliardino JJ (1997) Postnatal sequential changes in islet morphology and insulin secretion of normal hamsters. Pancreas 14:58–64

    Article  PubMed  CAS  Google Scholar 

  5. Kawai M, Kishi K (1997) In vitro studies of the stimulation of insulin secretion and B-cell proliferation by rat placental lactogen-II during pregnancy in rats. J Reprod Fertil 109:145–152

    Article  PubMed  CAS  Google Scholar 

  6. Brelje TC, Sorenson RL (1991) Role of prolactin versus growth hormone on islet B-cell proliferation in vitro: implications for pregnancy. Endocrinology 128:45–57

    PubMed  CAS  Google Scholar 

  7. Nielsen JH, Moldrup A, Billestrup N, Petersen ED, Allevato G, Stahl M (1992) The role of growth hormone and prolactin in beta cell growth and regeneration. Adv Exp Med Biol 321:9–17

    PubMed  CAS  Google Scholar 

  8. Sorenson RL, Brelje TC (1997) Adaptation of islets of Langerhans to pregnancy: beta-cell growth, enhanced insulin secretion and the role of lactogenic hormones. Horm Metab Res 29:301–307

    Article  PubMed  CAS  Google Scholar 

  9. Figueroa CD, Taberner PV (1994) Pancreatic islet hypertrophy in spontaneous maturity onset obese-diabetic CBA/Ca mice. Int J Biochem 26:1299–1303

    Article  PubMed  CAS  Google Scholar 

  10. Brockenbrough JS, Weir GC, Bonner-Weir S (1988) Discordance of exocrine and endocrine growth after 90% pancreatectomy in rats. Diabetes 37:232–236

    Article  PubMed  CAS  Google Scholar 

  11. Weir GC, Bonner-Weir S, Leahy JL (1990) Islet mass and function in diabetes and transplantation. Diabetes 39:401–405

    Article  PubMed  CAS  Google Scholar 

  12. Bonner-Weir S, Trent DF, Weir GC (1983) Partial pancreatectomy in the rat and subsequent defect in glucose-induced insulin release. J Clin Invest 71:1544–1553

    Article  PubMed  CAS  Google Scholar 

  13. Dudek RW, Kawabe T, Brinn JE, O’Brien K, Poole MC, Morgan CR (1984) Glucose affects in vitro maturation of fetal rat islets. Endocrinology 114:582–587

    Article  PubMed  CAS  Google Scholar 

  14. Bernard C, Thibault C, Berthault MF et al (1998) Pancreatic beta-cell regeneration after 48-h glucose infusion in mildly diabetic rats is not correlated with functional improvement. Diabetes 47:1058–1065

    Article  PubMed  CAS  Google Scholar 

  15. Chen L, Komiya I, Inman L, McCorkle K, Alam T, Unger RH (1989) Molecular and cellular responses of islets during perturbations of glucose homeostasis determined by in situ hybridization histochemistry. Proc Natl Acad Sci U S A 86:1367–1371

    Article  PubMed  CAS  Google Scholar 

  16. Bonner-Weir S, Deery D, Leahy JL, Weir GC (1989) Compensatory growth of pancreatic beta-cells in adult rats after short-term glucose infusion. Diabetes 38:49–53

    Article  PubMed  CAS  Google Scholar 

  17. Ogawa N, List JF, Habener JF, Maki T (2004) Cure of overt diabetes in NOD mice by transient treatment with anti-lymphocyte serum and exendin-4. Diabetes 53:1700–1705

    Article  PubMed  CAS  Google Scholar 

  18. Gu D, Sarvetnick N (1993) Epithelial cell proliferation and islet neogenesis in IFN-g transgenic mice. Development 118:33–46

    PubMed  CAS  Google Scholar 

  19. Unno M, Nata K, Noguchi N et al (2002) Production and characterization of Reg knockout mice: reduced proliferation of pancreatic beta-cells in Reg knockout mice. Diabetes 51(Suppl 3):S478–S483

    Article  PubMed  CAS  Google Scholar 

  20. Shing Y, Christofori G, Hanahan D, Ono Y, Sasada R, Igarashi K, Folkman J (1993) Betacellulin: a mitogen from pancreatic beta cell tumors. Science 259:1604–1607

    Article  PubMed  CAS  Google Scholar 

  21. Sasada R, Ono Y, Taniyama Y, Shing Y, Folkman J, Igarashi K (1993) Cloning and expression of cDNA encoding human betacellulin, a new member of the EGF family. Biochem Biophys Res Commun 190:1173–1179

    Article  PubMed  CAS  Google Scholar 

  22. Seno M, Tada H, Kosaka M et al (1996) Human betacellulin, a member of the EGF family dominantly expressed in pancreas and small intestine, is fully active in a monomeric form. Growth Factors 13:181–191

    Article  PubMed  CAS  Google Scholar 

  23. Ogata T, Dunbar AJ, Yamamoto Y, Tanaka Y, Seno M, Kojima I (2005) Betacellulin-delta 4, a novel differentiation factor for pancreatic beta-cells, ameliorates glucose intolerance in streptozotocin-treated rats. Endocrinology 146:4673–4681

    Article  PubMed  CAS  Google Scholar 

  24. Huotari MA, Palgi J, Otonkoski T (1998) Growth factor-mediated proliferation and differentiation of insulin-producing INS-1 and RINm5F cells: identification of betacellulin as a novel beta-cell mitogen. Endocrinology 139:1494–1499

    Article  PubMed  CAS  Google Scholar 

  25. Mashima H, Ohnishi H, Wakabayashi K et al (1996) Betacellulin and activin A coordinately convert amylase-secreting pancreatic AR42J cells into insulin-secreting cells. J Clin Invest 97:1647–1654

    Article  PubMed  CAS  Google Scholar 

  26. Yamamoto K, Miyagawa J, Waguri M et al (2000) Recombinant human betacellulin promotes the neogenesis of beta-cells and ameliorates glucose intolerance in mice with diabetes induced by selective alloxan perfusion. Diabetes 49:2021–2027

    Article  PubMed  CAS  Google Scholar 

  27. Demeterco C, Beattie GM, Dib SA, Lopez AD, Hayek A (2000) A role for activin A and betacellulin in human fetal pancreatic cell differentiation and growth. J Clin Endocrinol Metab 85:3892–3897

    Article  PubMed  CAS  Google Scholar 

  28. Li L, Seno M, Yamada H, Kojima I (2003) Betacellulin improves glucose metabolism by promoting conversion of intraislet precursor cells to beta-cells in streptozotocin-treated mice. Am J Physiol Endocrinol Metab 285:E577–E583

    PubMed  CAS  Google Scholar 

  29. Li L, Yi Z, Seno M, Kojima I (2004) Activin A and betacellulin: effect on regeneration of pancreatic beta-cells in neonatal streptozotocin-treated rats. Diabetes 53:608–615

    Article  PubMed  CAS  Google Scholar 

  30. Li L, Seno M, Yamada H, Kojima I (2001) Promotion of beta-cell regeneration by betacellulin in ninety percent-pancreatectomized rats. Endocrinology 142:5379–5385

    Article  PubMed  CAS  Google Scholar 

  31. Iwata I, Nagafuchi S, Nakashima H et al (1999) Association of polymorphism in the NeuroD/BETA2 gene with type 1 diabetes in the Japanese. Diabetes 48:416–419

    Article  PubMed  CAS  Google Scholar 

  32. Silver K, Tolea M, Wang J, Pollin TI, Yao F, Mitchell BD (2005) The exon 1 Cys7Gly polymorphism within the betacellulin gene is associated with T2DM in African Americans. Diabetes 54:1179–1184

    Article  PubMed  CAS  Google Scholar 

  33. Woo W, LaGasse JM, Zhou Z, Patel R, Palmer JP, Campus H, Hagopian WA (2000) A novel high-throughput method for accurate, rapid, and economical measurement of multiple type 1 diabetes autoantibodies. J Immunol Methods 244:91–103

    Article  PubMed  CAS  Google Scholar 

  34. Klitz W, Maiers M, Spellman S, Baxter-Lowe LA, Schmeckpeper B, Williams TM, Fernandez-Vina M (2003) New HLA haplotype frequency reference standards: high-resolution and large sample typing of HLA DR-DQ haplotypes in a sample of European Americans. Tissue Antigens 62:296–307

    Article  PubMed  CAS  Google Scholar 

  35. Zhang H, Jia Y, Cooper JJ, Hale T, Zhang Z, Elbein SC (2004) Common variants in glutamine:fructose-6-phosphate amidotransferase 2 (GFPT2) gene are associated with T2DM, diabetic nephropathy, and increased GFPT2 mRNA levels. J Clin Endocrinol Metab 89:748–755

    Article  PubMed  CAS  Google Scholar 

  36. O’Connell JR (2000) Zero-recombinant haplotyping: applications to fine mapping using SNPs. Genet Epidemiol 19 (Suppl 1):S64–S70

    Article  PubMed  Google Scholar 

  37. Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA (2002) Score tests for association between traits and haplotypes when linkage phase is ambiguous. Am J Hum Genet 70:425–434

    Article  PubMed  Google Scholar 

  38. Lange K, Cantor R, Horvath S, Perola M, Sabatti C, Sinsheimer J, Sobel E (2001) MENDEL version 4.0: a complete package for the exact genetic analysis of discrete trials in pedigree and population data sets. Am J Hum Genet 69(Suppl):A1886

    Google Scholar 

  39. Laird NM, Horvath S, Xu X (2000) Implementing a unified approach to family-based tests of association. Genet Epidemiol 19(Suppl 1):S36–S42

    Article  PubMed  Google Scholar 

  40. Spielman RS, Ewens WJ (1998) A sibship test for linkage in the presence of association: the sib transmission/disequilibrium test. Am J Hum Genet 62:450–458

    Article  PubMed  CAS  Google Scholar 

  41. Biason-Lauber A, Boehm B, Lang-Muritano M, Gauthier BR, Brun T, Wollheim CB, Schoenle EJ (2005) Association of childhood type 1 diabetes mellitus with a variant of PAX4: possible link to beta cell regenerative capacity. Diabetologia 48:900–905

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Xiao Chun Wang, Deana Trowbridge, and Kerry Nolan for excellent technical assistance; Amy Nathanson and Susan Kopunek for assistance in obtaining DNA samples; and Drs. Alan Farney and Lioubov Poliakova for providing adult human pancreatic tissue samples.

This work was supported by NIH grants 1K23DK02945-01 (K.S.) and 1R03DK062923-01 (K.S.) and JDRF grant 9-2001-1012 (V.M.). Funding and support were also provided by the Medical College of Wisconsin General Clinical Research Center Grant M01-RR00058, General Clinical Research Centers Program, National Center for Research Resources, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristi D. Silver.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silver, K.D., Magnuson, V.L., Tolea, M. et al. Association of a polymorphism in the betacellulin gene with type 1 diabetes mellitus in two populations. J Mol Med 84, 616–623 (2006). https://doi.org/10.1007/s00109-006-0052-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-006-0052-6

Keywords

Navigation