Skip to main content
Log in

Cardiac mechanotransduction and implications for heart disease

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Mechanotransduction, the conversion of a mechanical stimulus into a cellular response, plays a fundamental role in cell volume regulation, fertilization, gravitaxis, proprioception, and the senses of hearing, touch, and balance. Mechanotransduction also fills important functions in the myocardium, where each cycle of contraction and relaxation leads to dynamic deformations. Since the initial observation of stretch induced muscle growth, our understanding of this complex field has been steadily growing, but remains incomplete. For example, the mechanism by which myocytes sense mechanical forces is still unknown. It is also unknown which mechanism converts such a stimulus into an electrochemical signal, and how this information is transferred to the nucleus. Is there a subpopulation of mechanosensing myocytes or mechanosensing cells in the myocardium? The following article offers an overview of the fundamental processes of mechanical stretch sensing in myocytes and recent advances in our understanding of this increasingly important field. Special emphasis is placed on the unique cardiac cytoskeletal structure and related Z-disc proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

Abbreviations

BNC :

Brain sodium channel

CARP :

Cardiac ankyrin repeat protein

MLP :

Muscle LIM protein

SAC :

Stretch-activated channel

References

  1. Sackin H (1995) Mechanosensitive channels. Annu Rev Physiol 57:333–353

    CAS  PubMed  Google Scholar 

  2. Garcia-Anoveros J, Corey DP (1997) The molecules of mechanosensation. Annu Rev Neurosci 20:567–594

    Article  CAS  PubMed  Google Scholar 

  3. Csapo A, Erdos T, De Mattos CR, Gramss E, Moscowitz C (1965) Stretch-induced uterine growth, protein synthesis and function. Nature 207:1378–1379

    CAS  PubMed  Google Scholar 

  4. Chien KR, Olson EN (2002) Converging pathways and principles in heart development and disease: CV@CSH. Cell 110:153–162

    CAS  PubMed  Google Scholar 

  5. Chien KR (2000) Genomic circuits and the integrative biology of cardiac diseases. Nature 407 227–232

    Google Scholar 

  6. Mayer U, Saher G, Fassler R, Bornemann A, Echtermeyer F, von der Mark H, Miosge N, Poschl E, von der Mark K (1997) Absence of integrin alpha 7 causes a novel form of muscular dystrophy. Nat Genet 17:318–323

    CAS  PubMed  Google Scholar 

  7. Shai SY, Harpf AE, Babbitt CJ, Jordan MC, Fishbein MC, Chen J, Omura M, Leil TA, Becker KD, Jiang M, Smith DJ, Cherry SR, Loftus JC, Ross RS (2002) Cardiac myocyte-specific excision of the beta1 integrin gene results in myocardial fibrosis and cardiac failure. Circ Res 90:458–464

    Article  CAS  PubMed  Google Scholar 

  8. Knöll R, Hoshijima M, Hoffman HM, Person V, Lorenzen-Schmidt I, Bang M-L, Hayashi T, Shiga N, Yasukawa H, Schaper W, McKenna W, Yokoyama M, Schork NJ, Omens JH, McCulloch AD, Kimura A, Gregorio CC, Poller W, Schaper J, Schultheiss HP, Chien KR (2002) The cardiac mechanical stretch sensor machinery involves a Z disc complex that is defective in a subset of human dilated cardiomyopathy. Cell 27:943–956

    Google Scholar 

  9. Yamazaki T, Komuro I, Shiojima I, Yazaki Y (1999) The molecular mechanism of cardiac hypertrophy and failure. Ann N Y Acad Sci 874:38–48

    CAS  PubMed  Google Scholar 

  10. Sadoshima J, Qiu Z, Morgan JP, Izumo S (1996) Tyrosine kinase activation is an immediate and essential step in hypotonic cell swelling-induced ERK activation and c-fos gene expression in cardiac myocytes. EMBO J 15:5535–5546

    CAS  PubMed  Google Scholar 

  11. Sadoshima J, Izumo S (1993) Mechanical stretch rapidly activates multiple signal transduction pathways in cardiac myocytes: potential involvement of an autocrine/paracrine mechanism. EMBO J 12:1681–1692

    CAS  PubMed  Google Scholar 

  12. Sadoshima J, Xu Y, Slayter HS, Izumo S (1993) Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell 75:977–984

    CAS  PubMed  Google Scholar 

  13. MacKenna DA, Dolfi F, Vuori K, Ruoslahti E (1998) Extracellular signal-regulated kinase and c-Jun NH2-terminal kinase activation by mechanical stretch is integrin-dependent and matrix-specific in rat cardiac fibroblasts. J Clin Invest 101:301–310

    CAS  PubMed  Google Scholar 

  14. Davis JS, Hassanzadeh S, Winitsky S, Lin H, Satorius C, Vemuri R, Aletras AH, Wen H, Epstein ND (2001) The overall pattern of cardiac contraction depends on a spatial gradient of myosin regulatory light chain phosphorylation. Cell 107:631–641

    CAS  PubMed  Google Scholar 

  15. Ali MH, Schumacker PT (2002) Endothelial responses to mechanical stress: where is the mechanosensor? Crit Care Med 30 [Suppl 5]:S198–S206

    Google Scholar 

  16. Hu H, Sachs F (1997) Stretch-activated ion channels in the heart. J Mol Cell Cardiol 29:1511–1523

    CAS  PubMed  Google Scholar 

  17. Sigurdson W, Ruknudin A, Sachs F (1992) Calcium imaging of mechanically induced fluxes in tissue-cultured chick heart: role of stretch-activated ion channels. Am J Physiol 262:H1110–H1115

    CAS  PubMed  Google Scholar 

  18. Gannier F, White E, Lacampagne A, Garnier D, Le Guennec JY (1994) Streptomycin reverses a large stretch induced increases in [Ca2+]i in isolated guinea pig ventricular myocytes. Cardiovasc Res 28:1193–1198

    CAS  PubMed  Google Scholar 

  19. Gannier F, White E, Garnier, Le Guennec JY (1996) A possible mechanism for large stretch-induced increase in [Ca2+]i in isolated guinea-pig ventricular myocytes. Cardiovasc Res 32:158–167

    Google Scholar 

  20. Tatsukawa Y, Kiyosue T, Arita M (1997) Mechanical stretch increases intracellular calcium concentration in cultured ventricular cells from neonatal rats. Heart Vessels 12:128–135

    CAS  PubMed  Google Scholar 

  21. Gillespie PG, Walker RG (2001) Molecular basis of mechanosensory transduction. Nature 413 194–202

    Google Scholar 

  22. Sadoshima J, Takahashi T, Jahn L, Izumo S (1992) Roles of mechano-sensitive ion channels, cytoskeleton, and contractile activity in stretch-induced immediate-early gene expression and hypertrophy of cardiac myocytes. Proc Natl Acad Sci U S A 89:9905–9909

    CAS  PubMed  Google Scholar 

  23. Sadoshima J, Izumo S (1993) Mechanotransduction in stretch-induced hypertrophy of cardiac myocytes. J Recept Res 13–:777–794

    Google Scholar 

  24. Yamazaki T, Komuro I, Kudoh S, Zou Y, Nagai R, Aikawa R, Uozumi H, Yazaki Y (1998) Role of ion channels and exchangers in mechanical stretch-induced cardiomyocyte hypertrophy. Circ Res 82:430–437

    CAS  PubMed  Google Scholar 

  25. Chalfie M, Au M (1989) Genetic control of differentiation of the Caenorhabditis elegans touch receptor neurons. Science 243:1027–1033

    CAS  PubMed  Google Scholar 

  26. Price MP, Lewin GR, McIlwrath SL, Cheng C, Xie J, Heppenstall PA, Stucky CL, Mannsfeldt AG, Brennan TJ, Drummond HA, Qiao J, Benson CJ, Tarr DE, Hrstka RF, Yang B, Williamson RA, Welsh MJ (2000) The mammalian sodium channel BNC1 is required for normal touch sensation. Nature 407 1007–1011

    Google Scholar 

  27. Hummler E, Horisberger JD (1999) Genetic disorders of membrane transport. V. The epithelial sodium channel and its implication in human diseases. Am J Physiol 276:G567–571

    CAS  PubMed  Google Scholar 

  28. Ross RS, Borg TK (2001) Integrins and the myocardium. Circ Res 88:1112–1119

    CAS  PubMed  Google Scholar 

  29. Sadoshima J, Izumo S (1994) Roles of integrins in cell swelling-induced tyrosine phosphorylation in cardiac myocytes (abstract). Circulation 90:(I305

  30. Ruwhof C, van der Laarse A (2000) Mechanical stress-induced cardiac hypertrophy: mechanisms and signal transduction pathways. Cardiovasc Res 47:23–37

    CAS  PubMed  Google Scholar 

  31. Ingber DE (2003) Tensegrity I. Cell structure and hierarchical systems biology. J Cell Sci 116:1157–1173

    Article  CAS  PubMed  Google Scholar 

  32. Ingber DE (2003) Tensegrity II. How structural networks influence cellular information processing networks. J Cell Sci 116:1397–1408

    Article  CAS  PubMed  Google Scholar 

  33. Vandenburgh H, Kaufman S (1979) In vitro model for stretch-induced hypertrophy of skeletal muscle. Science 203 265–268

    Google Scholar 

  34. Komuro I, Kaida T, Shibazaki Y, Kurabayashi M, Katoh Y, Hoh E, Takaku F, Yazaki Y (1990) Stretching cardiac myocytes stimulates protooncogene expression. J Biol Chem 265:3595–3598

    CAS  PubMed  Google Scholar 

  35. Ingber DE (2002) Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. Circ Res 91:877–887

    Article  CAS  PubMed  Google Scholar 

  36. Gregorio CC, Granzier H, Sorimachi H, Labeit S (1999) Muscle assembly: a titanic achievement? Curr Opin Cell Biol 11:18–25

    Article  CAS  PubMed  Google Scholar 

  37. Gregorio CC, Trombitas K, Centner T, Kolmerer B, Stier G, Kunke K, Suzuki K, Obermayr F, Herrmann B, Granzier H, Sorimachi H, Labeit S (1998) The NH2 terminus of titin spans the Z-disc: its interaction with a novel 19-kD ligand (T-cap) is required for sarcomeric integrity. J Cell Biol 143:1013–1027

    Article  CAS  PubMed  Google Scholar 

  38. Moreira ES, Wiltshire TJ, Faulkner G, Nilforoushan A, Vainzof M, Suzuki OT, Valle G, Reeves R, Zatz M, Passos-Bueno MR, Jenne DE (2000) Limb-girdle muscular dystrophy type 2G is caused by mutations in the gene encoding the sarcomeric protein telethonin. Nat Genet 24:163–166

    Article  CAS  PubMed  Google Scholar 

  39. Furukawa T, Ono Y, Tsuchiya H, Katayama Y, Bang M, Labeit D, Labeit S, Inagaki N, Gregorio C (2001) Specific interaction of the potassium channel beta-subunit minK with the sarcomeric protein T-cap suggests a T-tubule-myofibril linking system. J Mol Biol 313:775–784

    Article  CAS  PubMed  Google Scholar 

  40. Minamisawa S, Hoshijima M, Chu G, Ward CA, Frank K, Gu Y, Martone ME, Wang Y, Ross J Jr, Kranias EG, Giles WR, Chien KR (1999) Chronic phospholamban-sarcoplasmic reticulum calcium ATPase interaction is the critical calcium cycling defect in dilated cardiomyopathy. Cell 99:313–322

    CAS  PubMed  Google Scholar 

  41. Bell SP, Nyland L, Tischler MD, McNabb M, Granzier H, LeWinter MM (2000) Alterations in the determinants of diastolic suction during pacing tachycardia. Circ Res 87:235–240

    Google Scholar 

  42. Wu Y, Labeit S, Lewinter MM, Granzier H (2002) Titin: an endosarcomeric protein that modulates myocardial stiffness in DCM. J Card Fail 8 [Suppl 6]):S276–S286

  43. Yamasaki R, Berri M, Wu Y, Trombitas K, McNabb M, Kellermayer MS, Witt C, Labeit D, Labeit S, Greaser M, Granzier H (2001) Titin-actin interaction in mouse myocardium: passive tension modulation and its regulation by calcium/S100A1. Biophys J 81:2297–2313

    CAS  PubMed  Google Scholar 

  44. Yamasaki R, Wu Y, McNabb M, Greaser M, Labeit S, Granzier H (2002) Protein kinase A phosphorylates titin’s cardiac-specific N2B domain and reduces passive tension in rat cardiac myocytes. Circ Res 90:1181–1188

    Article  CAS  PubMed  Google Scholar 

  45. Brancaccio M, Fratta L, Notte A, Hirsch E, Poulet R, Guazzone S, De Acetis M, Vecchione C, Marino G, Altruda F, Silengo L, Tarone G, Lembo G (2003) Melusin, a muscle-specific integrin beta (1)-interacting protein, is required to prevent cardiac failure in response to chronic pressure overload. Nat Med 9:68–75

    Article  CAS  PubMed  Google Scholar 

  46. Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J, Grant SR, Olson EN (1998) A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93:215–228

    CAS  PubMed  Google Scholar 

  47. Frey N, Olson EN (2002) Calsarcin-3, a novel skeletal muscle-specific member of the calsarcin family, interacts with multiple Z-disc proteins. J Biol Chem 277:13998–14004

    Article  CAS  PubMed  Google Scholar 

  48. Zhou Q, Chu PH, Huang C, Cheng CF, Martone ME, Knoll G, Shelton GD, Evans S, Chen J (2001) Ablation of Cypher, a PDZ-LIM domain Z-line protein, causes a severe form of congenital myopathy. J Cell Biol 155:605–612

    Article  CAS  PubMed  Google Scholar 

  49. Wang Z, Kutschke W, Richardson KE, Karimi M, Hill JA (2001) Electrical remodeling in pressure-overload cardiac hypertrophy: role of calcineurin. Circulation 104:1657–1663

    CAS  PubMed  Google Scholar 

  50. Guy PM, Kenny DA, Gill GN (1999) The PDZ domain of the LIM protein enigma binds to beta-tropomyosin. Mol Biol Cell 10:1973–1984

    CAS  PubMed  Google Scholar 

  51. Pashmforoush M, Pomies P, Peterson KL, Kubalak S, Ross J Jr, Hefti A, Aebi U, Beckerle MC, Chien KR (2001) Adult mice deficient in actinin-associated LIM-domain protein reveal a developmental pathway for right ventricular cardiomyopathy. Nat Med 7:591–597

    Article  CAS  PubMed  Google Scholar 

  52. Kuroda S, Tokunaga C, Kiyohara Y, Higuchi O, Konishi H, Mizuno K, Gill GN, Kikkawa U (1996) Protein-protein interaction of zinc finger LIM domains with protein kinase C. J Biol Chem 271:31029–31032

    Article  CAS  PubMed  Google Scholar 

  53. Huang C, Zhou Q, Liang P, Hollander MS, Sheikh F, Li X, Greaser M, Shelton GD, Evans S, Chen J (2003) Characterization and in vivo functional analysis of splice variants of cypher. J Biol Chem 278:7360–7365

    Article  CAS  PubMed  Google Scholar 

  54. Bang ML, Mudry RE, McElhinny AS, Trombitas K, Geach AJ, Yamasaki R, Sorimachi H, Granzier H, Gregorio CC, Labeit S (2001) Myopalladin, a novel 145-kilodalton sarcomeric protein with multiple roles in Z-disc and I-band protein assemblies. J Cell Biol 153:413–427

    Article  CAS  PubMed  Google Scholar 

  55. Chu W, Burns DK, Swerlick RA, Presky DH (1995) Identification and characterization of a novel cytokine-inducible nuclear protein from human endothelial cells. J Biol Chem 270:10236–10245

    Article  CAS  PubMed  Google Scholar 

  56. Zou Y, Evans S, Chen J, Kuo HC, Harvey RP, Chien KR (1997) CARP, a cardiac ankyrin repeat protein, is downstream in the Nkx2-5 homeobox gene pathway. Development 124:793–804

    CAS  PubMed  Google Scholar 

  57. Kong, Flick, Kudla, Konieczny (1997) Muscle LIM protein promotes myogenesis by enhancing the activity of MyoD (0270-7306 TA). Mol Cell Biol PG 4750-60 SB-M

  58. Scholl FA, McLoughlin P, Ehler E, de Giovanni C, Schafer BW (2000) DRAL is a p53-responsive gene whose four and a half LIM domain protein product induces apoptosis. J Cell Biol 151:495–506

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Virginia McIlwain is acknowledged for her excellent assistance in the preparation of this manuscript. R. Knöll is supported by DFG Kn 448/2-1, DFG Kn 448/6-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Knöll.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knöll, R., Hoshijima, M. & Chien, K. Cardiac mechanotransduction and implications for heart disease. J Mol Med 81, 750–756 (2003). https://doi.org/10.1007/s00109-003-0488-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-003-0488-x

Keywords

Navigation