Skip to main content
Log in

In-field yellow starthistle (Centaurea solstitialis) volatile composition under elevated temperature and CO2 and implications for future control

  • Original Article
  • Published:
Chemoecology Aims and scope Submit manuscript

Abstract

Abiotic stressors may affect biogenic volatile organic compounds (BVOCs) involved in plant communication. We examined how certain environmental conditions affect plant signaling via BVOC emission. Specifically, we investigated the effects of elevated CO2 and temperature in situ on BVOCs produced by mechanically damaged leaves of Centaurea solstitialis L. (yellow starthistle), a major invasive weed in western North America, grown in grassland plots in the foothills of northern California. The headspace BVOCs of C. solstitialis were collected in situ by a customized Teflon® bag and solid-phase microextraction and analyzed by gas chromatography–mass spectroscopy. Damaging leaves led to the release of 14 volatile compounds, predominantly sesquiterpenes. The co-occurrence of five compound pairs was highly significant across all treatments, which may be explained through synthesis by the same enzyme. We found no significant effect of treatment on the levels of individual or total volatiles. The stability of volatile profile for this invasive under future conditions should therefore (1) not alter indirect defense signaling and (2) support the selection of biological controls on the basis of their specificity to the identified in-field host plant BVOCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Beck JJ, Smith L, Merrill GB (2008) In situ volatile collection, analysis, and comparison of three Centaurea species and their relationship to biocontrol with herbivorous insects. J Agric Food Chem 56:2759–2764

    Article  CAS  PubMed  Google Scholar 

  • Beck JJ, Smith L, Baig N (2014) An overview of plant volatile metabolomics, sample treatment and reporting considerations with emphasis on mechanical damage and biological control of weeds. Phytochem Anal 25:331–341

    Article  CAS  PubMed  Google Scholar 

  • Beever EA, Brussard PF, Berger J (2003) Patterns of apparent extirpation among isolated populations of pikas (Ochotona princeps) in the Great Basin. J Mammal 84:37–54

    Article  Google Scholar 

  • Binder RG, Turner CE, Flath RA (1990) Comparison of yellow starthistle volatiles from different plant parts. J Agric Food Chem 38:764–767

    Article  CAS  Google Scholar 

  • Bohlmann J, Meyer-Gauen G, Croteau R (1998) Plant terpenoid synthases: molecular biology and phylogenetic analysis. Proc Natl Acad Sci USA 95:4126–4133

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bradley BA, Blumenthal DM, Wilcove DS, Ziska LH (2010) Predicting plant invasions in an era of global change. Trends Ecol Evol 25:310–318

    Article  PubMed  Google Scholar 

  • Büchel K, Malskies S, Mayer M, Fenning TM, Gershenzon J, Hilker M, Meiners T (2011) How plants give early herbivore alert: volatile terpenoids attract parasitoids to egg-infested elms. Basic App Ecol 12:403–412

    Article  Google Scholar 

  • Bülow N, König WA (2000) The role of germacrene D as a precursor in sesquiterpene biosynthesis: investigations of acid catalyzed, photochemically and thermally induced rearrangements. Phytochemistry 55:141–168

    Article  PubMed  Google Scholar 

  • Buttery RG, Maddox DM, Light DM, Ling LC (1986) Volatile components of yellow starthistle. J Agric Food Chem 34:786–788

    Article  CAS  Google Scholar 

  • Chappell J, VonLanken C, Vögeli U (1991) Elicitor-inducible 3-hydroxy-3-methylglutaryl coenzyme A reductase activity is required for sesquiterpene accumulation in tobacco cell suspension cultures. Plant Physiol 97:693–698

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen F, Tholl D, D’Auria JC, Farooq A, Pichersky E, Gershenzon J (2003) Biosynthesis and emission of terpenoid volatiles from Arabidopsis flowers. Plant Cell 15:481–494

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Co JE, Jones TH, Hefetz A, Tinaut A, Snelling RR (2003) The comparative exocrine chemistry of nine Old World species of Messor (Formicidae: Myrmicinae). Biochem Syst Ecol 31:367–373

    Article  CAS  Google Scholar 

  • Constable J, Litvak ME, Greenberg JP, Monson RK (1999) Monoterpene emission from coniferous trees in response to elevated CO2 concentration and climate warming. Glob Change Biol 5:252–267

    Article  Google Scholar 

  • Conti B, Canale A, Cioni PL, Flamini G, Rifici A (2011) Hyptis suaveolens and Hyptis spicigera (Lamiaceae) essential oils: qualitative analysis, contact toxicity and repellent activity against Sitophilus granarius (L.) (Coleoptera: Dryophthoridae). J Pest Sci 84:219–228

    Article  Google Scholar 

  • Crock J, Wildung M, Croteau R (1997) Isolation and bacterial expression of a sesquiterpene synthase cDNA clone from peppermint (Mentha piperita, L.) that produces the aphid alarm pheromone (E)-farnesene. Proc Natl Acad Sci 94:12833–12838

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Descimon H, Bachelard P, Boitier E, Pierrat V (2005) Decline and extinction of Parnassius apollo populations in France. In: Kuhn E, Feldmann R, Settele J (eds) Studies on the ecology and conservation of butterflies in Europe (EBIE). Pensoft, Sofia, pp 114–115

    Google Scholar 

  • Dicke M (2009) Behavioural and community ecology of plants that cry for help. Plant Cell Environ 32:654–665

    Article  CAS  PubMed  Google Scholar 

  • Dicke M, Abelis MW, Takabayashi J, Bruin J, Posthumus MA (1990) Plant strategies of manipulating predator–prey interactions through allelochemicals: prospects for application in pest control. J Chem Ecol 16:3091–3117

    Article  CAS  PubMed  Google Scholar 

  • DiTomaso J, Kyser GB, Pitcairn MJ (2006) Yellow starthistle management guide. In: Cal-IPC Publication 2006-03, California Invasive Plant Council, Berkeley, California. http://www.cal-ipc.org/ip/management/yst.php. Accessed 26 Nov 2011

  • Dudareva N, Negre F, Nagegowda DA, Orlova I (2006) Plant volatiles: recent advances and future perspectives. Crit Rev Plant Sci 25:417–440

    Article  CAS  Google Scholar 

  • Duhl TR, Helmig D, Guenther A (2008) Sesquiterpene emissions from vegetation: a review. Biogeosciences 5:761–777

    Article  CAS  Google Scholar 

  • Dukes JS (2000) Will the increasing atmospheric CO2 concentration affect the success of invasive species? In: Mooney HA, Hobbs RJ (eds) Invasive species in a changing world. Island Press, Washington, pp 95–113

    Google Scholar 

  • Dukes JS, Mooney HA (1999) Does global change increase the success of biological invaders? Trends Ecol Evol 14:135–139

    Article  PubMed  Google Scholar 

  • Dukes JS, Chiariello NR, Loarie SR, Field CB (2011) Strong response of an invasive plant species (Centaurea solstitialis L.) to global environmental changes. Ecol App 21:1887–1894

    Article  Google Scholar 

  • Edgington ES, Onghena P (2007) Randomization tests, 4th edn. Chapman & Hall, London

    Google Scholar 

  • Field CB, Lobell DB, Peters HA, Chiariello NR (2007) Feedbacks of terrestrial ecosystems to climate change. Annu Rev Environ Resour 32:1–29

    Article  Google Scholar 

  • Fortunati A, Barta C, Brilli F, Centritto M, Zimmer I, Schnitzler JP, Loreto F (2008) Isoprene emission is not temperature-dependent during and after severe drought-stress: a physiological and biochemical analysis. Plant J 55:687–697

    Article  CAS  PubMed  Google Scholar 

  • Francis F, Vandermoten S, Verheggen F, Lognay G, Haubruge E (2005) Is the (E)-β-farnesene only volatile terpenoid in aphids? J App Entomol 129:6–11

    Article  CAS  Google Scholar 

  • Gershenzon J (1994) Metabolic costs of terpenoid accumulation in higher plants. J Chem Ecol 20:1281–1328

    Article  CAS  PubMed  Google Scholar 

  • Gershenzon J, Maffei M, Croteau R (1989) Biochemical and histochemical localization of monoterpene biosynthesis in the glandular trichomes of spearmint (Mentha spicata). Plant Physiol 89:1351–1357

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ghirardo A, Heller W, Fladung M, Schnitzler JP, Schroeder H (2012) Function of defensive volatiles in pedunculate oak (Quercus robur) is tricked by the moth Tortrix viridana. Plant Cell Environ 35:2192–2207

    Article  CAS  PubMed  Google Scholar 

  • Gouinguené SP, Turlings TC (2002) The effects of abiotic factors on induced volatile emissions in corn plants. Plant Physiol 129:1296–1307

    Article  PubMed Central  PubMed  Google Scholar 

  • Grinspoon J, Bowman WD, Fall R (1991) Delayed onset of isoprene emission in developing velvet bean (Mucuna sp.) leaves. Plant Physiol 97:170–174

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Groom SV, Ngo HT, Rehan SM, Skelton P, Stevens MI, Schwarz MP (2014) Multiple recent introductions of apid bees into Pacific archipelagos signify potentially large consequences for both agriculture and indigenous ecosystems. Biol Invas 16:1–10

    Article  Google Scholar 

  • Guenther AB, Zimmerman PR, Harley PC, Monson RK, Fall R (1993) Isoprene and monoterpene emission rate variability: model evaluations and sensitivity analyses. J Geophys Res Atmos 98:12609–12617

    Article  Google Scholar 

  • Heil M (2004) Direct defense or ecological costs: responses of herbivorous beetles to volatiles released by wild Lima bean (Phaseolus lunatus). J Chem Ecol 30:1289–1295

    Article  CAS  PubMed  Google Scholar 

  • Hemmerlin A, Harwood JL, Bach TJ (2012) A raison d’être for two distinct pathways in the early steps of plant isoprenoid biosynthesis? Prog Lipid Res 51:95–148

    Article  CAS  PubMed  Google Scholar 

  • Iijima Y, Davidovich-Rikanati R, Fridman E, Gang DR, Bar E, Lewinsohn E, Pichersky E (2004) The biochemical and molecular basis for the divergent patterns in the biosynthesis of terpenes and phenylpropenes in the peltate glands of three cultivars of basil. Plant Physiol 136:3724–3736

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • IPCC (2013a) Introduction. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 119–158

  • IPCC (2013b) Summary for policymakers. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 3–29

  • IPCC (2014a) Summary for policymakers. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy EN, MacCracken S, Mastrandrea PR, White LL (eds) Climate change 2014: impacts, adaptation, and vulnerability. Contribution of working group II to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 3–20

  • IPCC (2014b) Terrestrial and inland water systems. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy EN, MacCracken S, Mastrandrea PR, White LL (eds) Climate change 2014: impacts, adaptation, and vulnerability. Contribution of working group II to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 1–143

  • James JJ, Smith BS, Vasquez EA, Sheley RL (2010) Principles for ecologically based invasive plant management. Invasive Plant Sci Manag 3:229–239

    Article  Google Scholar 

  • Keville R, Kannowski PB (1975) Sexual excitation by pheromones of the confused flour beetle. J Insect Physiol 21:81–84

    Article  CAS  PubMed  Google Scholar 

  • Kielty JP, Allen-Williams LJ, Underwood N, Eastwood EA (1996) Behavioral responses of three species of ground beetles (Coleoptera: Carabidae) to olfactory cues associated with prey and habitat. J Insect Behav 9:237–250

    Article  Google Scholar 

  • Koo HJ, Gang DR (2012) Suites of terpene synthases explain differential terpenoid production in ginger and turmeric tissues. PLoS One 7:e51481

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Körner C (2006) Plant CO2 responses: an issue of definition, time and resource supply. New Phytol 172:393–411

    Article  PubMed  Google Scholar 

  • Lerdau M, Litvak M, Monson R (1994) Plant chemical defense: monoterpenes and the growth-differentiation balance hypothesis. Trends Ecol Evol 9:58–61

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler HK (1999) The 1-deoxy-d-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Biol 50:47–65

    Article  CAS  Google Scholar 

  • Light DM, Knight A (2005) Specificity of codling moth (Lepidoptera: Tortricidae) for the host plant kairomone, ethyl (2E,4Z)-2,4-decadienoate: field bioassays with pome fruit volatiles, analogue, and isomeric compounds. J Agric Food Chem 53:4046–4053

    Article  CAS  PubMed  Google Scholar 

  • Llusià J, Peñuelas J, Alessio GA, Estiarte M (2008) Contrasting species-specific, compound-specific, seasonal, and interannual responses of foliar isoprenoid emissions to experimental drought in a Mediterranean Shrubland. Int J Plant Sci 169:637–645

    Article  Google Scholar 

  • Llusià J, Penuelas J, Prieto P, Estiarte M (2009) Net ecosystem exchange and whole plant isoprenoid emissions by a Mediterranean Shrubland exposed to experimental climate change. Russ J Plant Physl 56:29–37

    Article  Google Scholar 

  • Loreto F, Fischbach RJ, Schnitzler JP, Ciccioli P, Brancaleoni ENZO, Calfapietra C, Seufert G (2001) Monoterpene emission and monoterpene synthase activities in the Mediterranean evergreen oak Quercus ilex L. grown at elevated CO2 concentrations. Glob Change Biol 7:709–717

    Article  Google Scholar 

  • Manly BFJ (2007) Randomization, bootstrap, and Monte Carlo methods in biology, 3rd edn. Chapman & Hall, London

    Google Scholar 

  • May B, Lange BM, Wüst M (2013) Biosynthesis of sesquiterpenes in grape berry exocarp of Vitis vinifera L.: evidence for a transport of farnesyl diphosphate precursors from plastids to the cytosol. Phytochemistry 95:135–144

    Article  CAS  PubMed  Google Scholar 

  • McFrederick QS, Fuentes JD, Roulston TA, Kathilankal JC, Lerdau M (2009) Effects of air pollution on biogenic volatiles and ecological interactions. Oecologia 160:411–420

    Article  PubMed  Google Scholar 

  • McGarvey DJ, Croteau R (1995) Terpenoid metabolism. Plant Cell 7:1015–1026

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McMurry JE, Bosch GK (1985) Synthesis of bicyclogermacrene and lepidozene. Tetrahedron Lett 26:2167–2170

    Article  CAS  Google Scholar 

  • Monson RK, Trahan N, Rosenstiel TN et al (2007) Isoprene emission from terrestrial ecosystems in response to global change: minding the gap between models and observations. Philos Trans R Soc A 365:1677–1695

    Article  CAS  Google Scholar 

  • Mooney HA, Cleland EE (2001) The evolutionary impact of invasive species. Proc Natl Acad Sci 98:5446–5451

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mooney HA, Drake JA (1986) Ecology of biological invasions of North America and Hawaii. Springer, New York, pp 1–321

    Book  Google Scholar 

  • Norby RJ, DeLucia EH, Gielen B et al (2005) Forest response to elevated CO2 is conserved across a broad range of productivity. Proc Nati Acad Sci USA 102:18052–18056

    Article  CAS  Google Scholar 

  • Norby RJ, Warren JM, Iversen CM, Medlyn BE, McMurtrie RE (2010) CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc Natl Acad Sci USA 107:19368–19373

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ormeno (2007) Water deficit stress induces different monoterpene and sesquiterpene emission changes in Mediterranean species. Chemosphere 67:276–284

    Article  CAS  PubMed  Google Scholar 

  • Oster M, Smith L, Beck JJ, Howard A, Field CB (2014) Orientation behavior of predaceous ground beetle species in response to volatile emissions identified from yellow starthistle damaged by an invasive slug. Arthropod Plant Interact 8:429–437

    Article  Google Scholar 

  • Peñuelas J, Staudt M (2010) BVOCs and global change. Trends Plant Sci 15:133–144

    Article  PubMed  Google Scholar 

  • Peters HA, Cleland EE, Mooney HA, Field CB (2006) Herbivore control of annual grassland composition in current and future environments. Ecol Lett 9:86–94

    Article  PubMed  Google Scholar 

  • Pitcairn M, Schoenig S, Yacoub R, Gendron J (2006) Yellow starthistle continues its spread in California. Calif Agri 60:83–90

    Article  Google Scholar 

  • Price PW, Bouton CE, Gross P, McPheron BA, Thompson JN, Weis AE (1980) Interactions among three trophic levels: influence of plants on interactions between insect herbivores and natural enemies. Annu Rev Ecol Syst 11:41–65

    Article  Google Scholar 

  • Ray DP, Srivastava S, Singh RP (2012) Gas chromatographic–mass spectrometric (GC–MS) analysis of marigold (Tagetes erecta L.) flower oil. Int J Agric Environ Biotechnol 5:215–218

    Google Scholar 

  • Rosenstiel TN, Potosnak MJ, Griffin KL, Fall R, Monson RK (2003) Increased CO2 uncouples growth from isoprene emission in an agriforest ecosystem. Nature 421:256–259

    Article  CAS  PubMed  Google Scholar 

  • Rustad L, Campbell J, Marion G et al (2001) A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126:543–562

    Article  Google Scholar 

  • Senatore F, Rigano D, De Fusco R, Bruno M (2003) Volatile components of Centaurea cineraria L. subsp. umbrosa (Lacaita) Pign. and Centaurea napifolia L. (Asteraceae), two species growing wild in Sicily. Flavour Frag J 18:248–251

    Article  CAS  Google Scholar 

  • Sharkey TD, Chen XY, Yeh S (2001) Isoprene increases thermotolerance of fosmidomycin-fed leaves. Plant Physiol 125:2001–2006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shaw MR, Zavaleta ES, Chiariello NR, Cleland EE, Mooney HA, Field CB (2002) Grassland responses to global environmental changes suppressed by elevated CO2. Science 298:1987–1990

    Article  CAS  PubMed  Google Scholar 

  • Sidney M, Gries R, Danci A, Judd GJ, Gries G (2006) Almond volatiles attract neonate larvae of Anarsia lineatella (Zeller) (Lepidoptera: Gelechiidae). J Entomol Soc B C 103:3–10

    Google Scholar 

  • Smith L, Beck JJ (2013) Effect of mechanical damage on emission of volatile organic compounds from plant leaves and implications for evaluation of host plant specificity of prospective biological control agents of weeds. Biocontrol Sci Technol 23:880–907

    Article  Google Scholar 

  • Steele CL, Crock J, Bohlmann J, Croteau R (1998) Sesquiterpene synthases from grand fir (Abies grandis): comparison of constitutive and wound-induced activities, and cDNA isolation, characterization, and bacterial expression of δ-selinene synthase and γ-humulene synthase. J Biol Chem 273:2078–2089

    Article  CAS  PubMed  Google Scholar 

  • Tholl D (2006) Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr Opin Plant Biol 9:297–304

    Article  CAS  PubMed  Google Scholar 

  • Tholl D, Chen F, Petri J, Gershenzon J, Pichersky E (2005) Two sesquiterpene synthases are responsible for the complex mixture of sesquiterpenes emitted from Arabidopsis flowers. Plant J 42:757–771

    Article  CAS  PubMed  Google Scholar 

  • Tholl D, Boland W, Hansel A, Loreto F, Röse USR, Schnitzler JP (2006) Practical approaches to plant volatile analysis. Plant J 45:540–560

    Article  CAS  PubMed  Google Scholar 

  • Thompson JN (2005) Coevolution: the geographic mosaic of coevolutionary arms races. Curr Biol 15:R992–R994

    Article  CAS  PubMed  Google Scholar 

  • Turlings TCJ, Tumlinson JH, Lewis WJ (1990) Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250:1251–1253

    Article  CAS  PubMed  Google Scholar 

  • Vallat A, Gu H, Dorn S (2005) How rainfall, relative humidity and temperature influence volatile emissions from apple trees in situ. Phytochemistry 66:1540–1550

    Article  CAS  PubMed  Google Scholar 

  • Van Driesche R, Hoddle M, Center T (2008) The invasion crisis. Control of pests and weeds by natural enemies. Wiley-Blackwell, Malden, pp 69–79

    Google Scholar 

  • van Groenigen KJ, Qi X, Osenberg CW, Luo Y, Hungate BA (2014) Faster decomposition under increased atmospheric CO2 limits soil carbon storage. Science 344:508–509

    Article  PubMed  Google Scholar 

  • Verlinden M, De Boeck HJ, Nijs I (2014) Climate warming alters competition between two highly invasive alien plant species and dominant native competitors. Weed Res 54:234–244

    Article  Google Scholar 

  • Vet LEM, Dicke M (1992) Ecology of infochemical use by natural enemies in a tritrophic context. Annu Rev Entomol 37:141–172

    Article  Google Scholar 

  • Visser ME, Both C (2005) Shifts in phenology due to global climate change: the need for a yardstick. Proc R Soc B Biol Sci 272:2561–2569

    Article  Google Scholar 

  • Vuorinen T, Nerg AM, Ibrahim MA, Reddy GVP, Holopainen JK (2004) Emission of Plutella xylostella-induced compounds from cabbages grown at elevated CO2 and orientation behavior of the natural enemies. Plant Physiol 135:1984–1992

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang Y, Kays SJ (2002) Sweetpotato volatile chemistry in relation to sweetpotato weevil (Cylas formicarius) behavior. J Am Soc Hortic Sci 127:656–662

    CAS  Google Scholar 

  • Waterman PG, Mole S (1989) Extrinsic factors influencing production of secondary metabolites in plants. Insect Plant Interact 1:107–134

    Google Scholar 

  • Weissbecker B, Van Loon JJA, Posthumus MA, Bouwmeester HR, Dicke M (2000) Identification of volatile potato sesquiterpenoids and their olfactory detection by the two-spotted stinkbug Perillus bioculatus. J Chem Ecol 26:1433–1445

    Article  CAS  Google Scholar 

  • Wheeler GS, Schaffner U (2013) Improved understanding of weed biological control safety and impact with chemical ecology: a review. Invasive Plant Sci Manag 6:16–29

    Article  CAS  Google Scholar 

  • Wilson LM, Jette C, Conett J, McAffrey J, Randall CB, Kuykendall C, Lake L (2003) Getting to know yellow starthistle. Biology and biological control of yellow starthistle. USDA Forest Service: Forest Health Technology Enterprise Team Publications, Idaho, pp 5–9

    Google Scholar 

  • Woodward FI, Lake JA, Quick WP (2002) Stomatal development and CO2: ecological consequences. New Phytol 153:477–484

    Article  CAS  Google Scholar 

  • Yuan JS, Himanen SJ, Holopainen JK, Chen F, Stewart CN Jr (2009) Smelling global climate change: mitigation of function for plant volatile organic compounds. Trends Ecol Evol 24:323–331

    Article  PubMed  Google Scholar 

  • Yuan R, Li S, Zheng X, Wu Q, Zhang H, Wang L (2014) Determination of volatiles in water lily flowers using gas chromatography–mass spectrometry. Anal Lett 47:1541–1551

    Article  CAS  Google Scholar 

  • Zavaleta ES, Shaw MR, Chiariello NR, Thomas BD, Cleland EE, Field CB, Mooney HA (2003) Grassland responses to three years of elevated temperature, CO2, precipitation, and N deposition. Ecol Monogr 73:585–604

    Article  Google Scholar 

Download references

Acknowledgments

We would like to express gratitude to Nona Chiariello of Jasper Ridge Biological Preserve at Stanford University, and Michael Dini and Todd Tobeck of the Carnegie Institution for Science for providing field advice and support. We also thank Wai Gee of the USDA Agricultural Research Service for providing technical knowledge. This Jasper Ridge Global Change experiment was supported by the National Science Foundation (Grant 091817), A. W. Mellon Foundation, Carnegie Institution for Science, and Stanford University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Oster.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Handling Editor: Liliane Ruess.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oster, M., Beck, J.J., Furrow, R.E. et al. In-field yellow starthistle (Centaurea solstitialis) volatile composition under elevated temperature and CO2 and implications for future control. Chemoecology 25, 313–323 (2015). https://doi.org/10.1007/s00049-015-0200-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00049-015-0200-y

Keywords

Navigation