Skip to main content
Log in

A Remark on the Arcsine Distribution and the Hilbert transform

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

It is known that if \((p_n)_{n \in \mathbb {N}}\) is a sequence of orthogonal polynomials in \(L^2([-1,1], w(x)dx)\), then the roots are distributed according to an arcsine distribution \(\pi ^{-1} (1-x^2)^{-1}dx\) for a wide variety of weights w(x). We connect this to a result of the Hilbert transform due to Tricomi: if \(f(x)(1-x^2)^{1/4} \in L^2(-1,1)\) and its Hilbert transform Hf vanishes on \((-1,1)\), then the function f is a multiple of the arcsine distribution

$$\begin{aligned} f(x) = \frac{c}{\sqrt{1-x^2}}\chi _{(-1,1)} \qquad \text{ where }~c~\in \mathbb {R}. \end{aligned}$$

We also prove a localized Parseval-type identity that seems to be new: if \(f(x)(1-x^2)^{1/4} \in L^2(-1,1)\) and \(f(x) \sqrt{1-x^2}\) has mean value 0 on \((-1,1)\), then

$$\begin{aligned} \int _{-1}^{1}{ (Hf)(x)^2 \sqrt{1-x^2} dx} = \int _{-1}^{1}{ f(x)^2 \sqrt{1-x^2} dx}. \end{aligned}$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alaifari, R., Pierce, L.B., Steinerberger, S.: Lower bounds on the truncated Hilbert transform. Rev. Mat. Iberoam. 32(1), 23–56 (2016)

    Google Scholar 

  2. Astala, K., Päivärinta, L., Saksman, E.: The finite Hilbert transform in weighted spaces. Proc. R. Soc. Edinb. Sect. A 126(6), 1157–1167 (1996)

    Google Scholar 

  3. Bertola, M., Katsevich, A., Tovbis, A.: Inversion formulae for the cosh-weighted Hilbert transform. Proc. Am. Math. Soc. 141(8), 2703–2718 (2013)

    Google Scholar 

  4. Coifman, R., Weiss, G.: Extensions of Hardy spaces and their use in analysis. Bull. Am. Math. Soc. 83(4), 569–645 (1977)

    Google Scholar 

  5. Erdős, P., Turán, P.: On interpolation. III. Interpolatory theory of polynomials. Ann. Math. 41, 510–553 (1940)

    Google Scholar 

  6. Erdős, P., Freud, G.: On orthogonal polynomials with regularly distributed zeros. Proc. Lond. Math. Soc. 29, 521–537 (1974)

    Google Scholar 

  7. Granero-Belinchon, R.: On a nonlocal differential equation describing roots of polynomials under differentiation, arXiv:1812.00082

  8. Jaming, P., Pozzi, E., Wick, B.: Lower bounds for the dyadic Hilbert transform. Ann. Fac. Sci. Toulouse Math. 27(1), 265–284 (2018)

    Google Scholar 

  9. Katsevich, A.: Singular value decomposition for the truncated Hilbert transform. Inverse Probl. 26, 115011 (2010)

    Google Scholar 

  10. Katsevich, A.: Singular value decomposition for the truncated Hilbert transform: part II. Inverse Probl. 27(7), 075006 (2011)

    Google Scholar 

  11. Lederman, R., Steinerberger, S.: Stability estimates for truncated fourier and laplace transforms. Integral Equ. Oper. Theory 87, 529–543 (2017)

    Google Scholar 

  12. Okada, S., Elliott, D.: The finite Hilbert transform in \(L^2\). Math. Nachr. 153, 43–56 (1991)

    Google Scholar 

  13. Okada, S., Elliott, D.: Hölder continuous functions and the finite Hilbert transform. Math. Nachr. 169, 219–233 (1994)

    Google Scholar 

  14. Okada, S., Elliot, D.: The finite Hilbert transform and weighted Sobolev spaces. Math. Nachr. 266, 34–47 (2004)

    Google Scholar 

  15. Ruland, A.: Quantitative Invertibility and Approximation for the Truncated Hilbert and Riesz Transforms, arXiv:1708.04285

  16. Steinerberger, S.: Electrostatic interpretation of zeros of orthogonal polynomials. Proc. Am. Math. Soc. 146, 5323–5331 (2018)

    Google Scholar 

  17. Steinerberger, S.: A nonlocal transport equation describing roots of polynomials under differentiation, arXiv:1811.04844

  18. Tricomi, F.: On the finite Hilbert transformation. Quart. J. Math. Oxf Ser. 2, 199–211 (1951)

    Google Scholar 

  19. Tricomi, F.: Integral Equations. Pure and Applied Mathematics, vol. 5. Interscience Publishers, Inc., New York (1957)

    Google Scholar 

  20. Ullman, J.L.: On the regular behaviour of orthogonal polynomials. Proc. Lond. Math. Soc. 24, 119–148 (1972)

    Google Scholar 

  21. Van Assche, W.: Asymptotics for orthogonal polynomials. Lecture Notes in Mathematics, vol. 1265. Springer, Berlin (1987)

    Google Scholar 

Download references

Acknowledgements

We are grateful to the referee for refering us to the work of Tricomi and several helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Steinerberger.

Additional information

Communicated by Thomas Strohmer.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

C. R. is partially supported by the NIH. S.S. is partially supported by the NSF (DMS-1763179) and the Alfred P. Sloan Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coifman, R.R., Steinerberger, S. A Remark on the Arcsine Distribution and the Hilbert transform. J Fourier Anal Appl 25, 2690–2696 (2019). https://doi.org/10.1007/s00041-019-09678-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-019-09678-w

Keywords

Mathematics Subject Classification

Navigation