Skip to main content
Log in

Landraces from mountainous regions of Switzerland are sources of important genes for stem rust resistance in barley

  • Original Article
  • Published:
Alpine Botany Aims and scope Submit manuscript

Abstract

Stem rust, caused by Puccinia graminis f. sp. tritici, can be a serious disease problem of barley in some production areas of the world. Deployment of resistant cultivars is the best means for controlling the disease. In North America, stem rust of barley has been kept in check for more than 70 years through the widespread use of the resistance gene Rpg1, which was derived from a landrace collected in Switzerland. Rpg1 is effective against many, but not all races of P. graminis f. sp. tritici. With the threat of Rpg1-virulent races like TTKSK and QCCJB from Africa and North America, respectively, it is important that additional sources of stem rust resistance be identified in barley. Given that resistance was previously identified in germplasm from Switzerland, the primary objective of this study was to characterize a collection of Swiss barley landraces from the mountainous regions of canton Graubünden for their reaction to stem rust races TTKSK and QCCJB as well as HKHJC, which is diagnostic for detecting Rpg1. From the stem rust phenotyping of 73 barley landraces, we found a remarkably high frequency (>43 %) of resistance to the virulent P. graminis f. sp. tritici races of TTKSK and QCCJB. In nearly every case, this resistance was due to the rpg4/Rpg5 gene complex as determined by a molecular assay. Two landraces were also found to carry Rpg1 based on their diagnostic resistant reaction to race HKHJC and presence of an amplicon specific for the gene. These results demonstrate that landraces from the mountainous areas of eastern Switzerland are valuable sources of important resistance genes for protecting barley from the devastating disease of stem rust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arora D, Gross T, Brueggeman R (2013) Allele characterization of genes required for rpg4-mediated wheat stem rust resistance identifies Rpg5 as the R gene. Phytopathology 103:1153–1161

    Article  CAS  PubMed  Google Scholar 

  • Browder L (1971) Pathogenic specialization in cereal rust fungi, especially Puccinia recondita f. sp. tritici: concepts, methods of study, and application. USDA-ARS Technical Bulletin 1432. US Govt. Printing Office, Washington, DC

  • Brueggeman R, Rostoks N, Kudrna D, Kilian A, Han F, Chen J, Druka A, Steffenson B, Kleinhofs A (2002) The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases. Proc Natl Acad Sci USA 99:9328–9333. doi:10.1073/pnas.142284999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brueggeman R, Druka A, Nirmala J, Cavileer T, Drader T, Rostoks N, Mirlohi A, Bennypaul H, Gill U, Kudrna D, Whitelaw C, Kilian A, Han F, Sun Y, Gill K, Steffenson B, Kleinhofs A (2008) The stem rust resistance gene Rpg5 encodes a protein with nucleotide-binding-site, leucine-rich, and protein kinase domains. Proc Natl Acad Sci USA 105:14970–14975. doi:10.1073/pnas.0807270105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Close TJ, Bhat PR, Lonardi S et al (2009) Development and implementation of high-throughput SNP genotyping in barley. BMC Genom 10:582. doi:10.1186/1471-2164-10-582

    Article  Google Scholar 

  • Comadran J, Kilian B, Russell J et al (2012) Natural variation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley. Nat Genet 44:1388–1392

    Article  CAS  PubMed  Google Scholar 

  • De la Pena RC, Smith KP, Capettini F et al (1999) Quantitative trait loci associated with resistance to Fusarium head blight and kernel discoloration in barley. Theor Appl Genet 99:561–569. doi:10.1007/s001220051269

    Article  PubMed  Google Scholar 

  • Derevnina L, Fetch T, Singh D, Brueggeman R, Dong C, Park RF (2014) Analysis of stem rust resistance in Australian barley cultivars. Plant Dis 98:1485–1493

    Article  CAS  Google Scholar 

  • Eckstein P, Rossnagel B, Scoles G (2003) Allele-specific markers within the barley stem rust resistance gene (Rpg1). Barley Genet Newsl 33:7–11

    Google Scholar 

  • Food and Agriculture Organization of the United Nations (2016) Statistics Division, United Nations. Stat. Div. http://faostat3.fao.org/home/E. Accessed 4 Jan 2016

  • Grando S, Gomez Macpherson S (2005) Food barley: importance, uses and local knowledge. International Center for Agricultural Research in the Dry Areas (ICARDA), Aleppo

    Google Scholar 

  • Harder DE, Dunsmore KM (1991) Incidence and virulence of Puccinia graminis f. sp. tritici on wheat and barley in Canada in 1990. Can J Plant Pathol 13:361–364

    Article  Google Scholar 

  • Huang Y, Millett B, Beaubien K, Dahl SK, Steffenson BJ, Smith KP, Muehlbauer GJ (2013) Haplotype diversity and population structure in cultivated and wild barley evaluated for Fusarium head blight responses. Theor Appl Genet 126:619–636. doi:10.1007/s00122-012-2006-4

    Article  PubMed  Google Scholar 

  • Jacomet S (2006) Plant economy of the northern Alpine lake dwellings—3500–2400 cal. BC. Environ Archaeol 11:65–85. doi:10.1179/174963106x97061

    Article  Google Scholar 

  • Jin Y, Steffenson B, Fetch T (1994a) Sources of resistance to pathotype QCC of Puccinia graminis f. sp. tritici in barley. Crop Sci 34:285–288

    Article  CAS  Google Scholar 

  • Jin Y, Steffenson BJ, Miller JD (1994b) Inheritance of resistance to pathotypes QCC and MCC of Puccinia graminis f. sp. tritici in barley line Q21861 and temperature effects on the expression of resistance. Phytopathology 84:452–455

    Article  Google Scholar 

  • Leonard KJ, Szabo L (2005) Pathogen profile: stem rust of small grains and grasses caused by Puccinia graminis. Mol Plant Pathol 6:99–111. doi:10.1111/J.1364-3703.2004.00273.X

    Article  PubMed  Google Scholar 

  • Ma Z, Steffenson BJ, Prom LK, Lapitan NL (2000) Mapping of quantitative trait loci for Fusarium head blight resistance in barley. Phytopathology 90:1079–1088. doi:10.1094/PHYTO.2000.90.10.1079

    Article  CAS  PubMed  Google Scholar 

  • Ma ZQ, Lapitan NLV, Steffenson B (2004) QTL mapping of net blotch resistance genes in a doubled-haploid population of six-rowed barley. Euphytica 137:291–296. doi:10.1023/B:EUPH.0000040441.36990.58

    Article  CAS  Google Scholar 

  • Mamo BE, Brueggeman RS, Smith KP, Steffenson BJ (2015) Genetic characterization of resistance to wheat stem rust race TTKSK in landrace and wild barley accessions identifies the rpg4/Rpg5 locus. Phytopathology 105:99–109. doi:10.1094/PHYTO-12-13-0340-R

    Article  CAS  PubMed  Google Scholar 

  • Martens JW, Dunsmore KM, Harder DE (1989) Incidence and virulence of Puccinia graminis in Canada on wheat and barley in 1988. Can J Plant Pathol 11:424–430

    Article  Google Scholar 

  • Miles M, Wilcoxson R, Rasmusson D (1989) Inheritance of resistance to kernel discoloration of barley. Plant Dis 73:711–715

    Article  Google Scholar 

  • Mirlohi A, Brueggeman R, Drader T (2008) Allele sequencing of the barley stem rust resistance gene Rpg1 identifies regions relevant to disease resistance. Phytopathology 98:910–918

    Article  CAS  PubMed  Google Scholar 

  • Newman RK, Newman CW (2008) Barley for Food and Health: Science, Technology, and Products. Wiley, Hoboken

    Book  Google Scholar 

  • Newton AC, Akar T, Baresel JP et al (2010) Cereal landraces for sustainable agriculture. A review. Agron Sustain Dev 30:237–269. doi:10.1051/agro/2009032

    Article  Google Scholar 

  • Newton AC, Flavell AJ, George TS et al (2011) Crops that feed the world 4. Barley: a resilient crop? Strengths and weaknesses in the context of food security. Food Secur 3:141–178. doi:10.1007/s12571-011-0126-3

    Article  Google Scholar 

  • Oehler E (1950) Die Züchtung der Getreidearten und die Produktion und Anerkennung von Getreidesaatgut in der Schweiz. Druckwerkstätten Koehler & Hennemann, Wiesbaden

    Google Scholar 

  • Poland JA, Brown PJ, Sorrells ME, Jannink J-L (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS One 7:e32253. doi:10.1371/journal.pone.0032253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pretorius ZA, Singh RP, Wagoire WW, Payne TS (2000) Detection of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis f. sp. tritici in Uganda. Plant Dis 84:203. doi:10.1094/PDIS.2000.84.2.203B

    Article  Google Scholar 

  • Roelfs AP (1982) Effects of barberry eradication on stem rust in the United States. Plant Dis 66:177–181

    Article  Google Scholar 

  • Roelfs AP, Long DL, Steffenson BJ, Jin Y, Hughes ME, Casper DH (1990) Barley rusts in the United States in 1990. Barley Newsl 34:73–76

    Google Scholar 

  • Schilperoord P (2013) Kulturpflanzen in der Schweiz—Gerste. Verein für alpine Kulturpflanzen Association for Alpine Crops, Alvaneu

    Google Scholar 

  • Shands RG (1939) Chevron, a barley variety resistant to stem rust and other diseases. Phytopathology 29:209–211

    Google Scholar 

  • Singh RP, Hodson DP, Huerta-Espino J, Jin Y, Njau P, Wanyera R, Herrera-Foessel SA, Ward RW (2008) Will stem rust destroy the world’s wheat crop? In: Sparks DL (ed) Advances in agronomy, vol 98. Elsevier Inc., Amsterdam, pp 271–309

    Google Scholar 

  • Singh RP, Hodson DP, Jin Y, Lagudah ES, Ayliffe MA, Bhavani S, Rouse MN, Pretorius ZA, Szabo LJ, Huerta-Espino J, Basnet BR, Lan C, Hovmøller MS (2015) Emergence and spread of new races of wheat stem rust fungus: continued threat to food security and prospects of genetic control. Phytopathology 105:872–884

    Article  PubMed  Google Scholar 

  • Stakman E, Stewart D, Loegering W (1962) Identification of physiologic races of Puccinia graminis var. tritici. USDA-ARS Bulletin E617

  • Steffenson BJ (1992) Analysis of durable resistance to stem rust in barley. Euphytica 63:153–167

    Article  Google Scholar 

  • Steffenson BJ (2003) Fusarium head blight of barley: Impacts, epidemics, management, and strategies for identifying and utilizing genetic resistance. In: Leonard KJ, Bushnell WR (eds) Fusarium head blight of wheat and barley. American Phytopathological Society Press, St. Paul, pp 241–295

    Google Scholar 

  • Steffenson BJ, Jin Y, Rossnagel BG, Rasmussen JB, Kao K (1995) Genetics of multiple disease resistance in a doubled-haploid population of barley. Plant Breed 114:50–54

    Article  Google Scholar 

  • Steffenson BJ, Jin Y, Brueggeman RS et al (2009) Resistance to stem rust race TTKSK maps to the rpg4/Rpg5 complex of chromosome 5H of barley. Phytopathology 99:1135–1141

    Article  CAS  PubMed  Google Scholar 

  • Steffenson B, Zhou H, Chai Y, Grando S (2012) Vulnerability of cultivated and wild barley to African stem rust race TTKSK. In: Zhang G, Li C, Xu L (ed) Proceedings of the 11th international barley genetics symposium, pp 243–255

  • Sun Y, Steffenson B (2005) Reaction of barley seedlings with different stem rust resistance genes to Puccinia graminis f. sp. tritici and Puccinia graminis f. sp. secalis. Can J Plant Pathol 27:80–89

    Article  Google Scholar 

  • Swiss Web Flora (2016). http://www.wsl.ch/land/products/webflora/welcome-en.ehtml. Accessed 4 Jan 2016

  • Wang X, Richards J, Gross T, Druka A, Kleinhofs A, Steffenson B, Acevedo M, Brueggeman R (2013) The rpg4-mediated resistance to wheat stem rust (Puccinia graminis) in barley (Hordeum vulgare) requires Rpg5, a second NBS-LRR gene, and an actin depolymerization factor. Mol Plant-Microb Interac 26:407–418. doi:10.1094/MPMI-06-12-0146-R

    Article  CAS  Google Scholar 

  • Windels CE (2000) Economic and social impacts of Fusarium head blight: changing farms and rural communities in the northern great plains. Phytopathology 90:17–21. doi:10.1094/PHYTO.2000.90.1.17

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

BJS thanks Geert Kleijer for sharing the germplasm that initiated this study, Peer Schilperoord for his insightful knowledge of barley cultivation and agriculture in the mountainous regions of Graubünden and Markus Andres for his critical reading of the manuscript. Pablo Olivera, Stephanie Dahl, Tamas Szinyei and Matthew Martin provided excellent technical assistance for this study. This research was supported by the Lieberman-Okinow Endowment at the University of Minnesota; American Malting Barley Association; and United States Department of Agriculture–Agricultural Research Service Specific Cooperative Agreement: Development of Stem Rust Resistant Barley for the Upper Midwest, Agreement Number 58-3640-0-648.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian J. Steffenson.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 4579 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steffenson, B.J., Solanki, S. & Brueggeman, R.S. Landraces from mountainous regions of Switzerland are sources of important genes for stem rust resistance in barley. Alp Botany 126, 23–33 (2016). https://doi.org/10.1007/s00035-015-0161-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00035-015-0161-3

Keywords

Navigation