Skip to main content
Log in

A Batteryless Energy Harvesting Storage System for Implantable Medical Devices Demonstrated In Situ

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

We report a wireless energy harvesting and telemetry storage system in 180 nm CMOS technology, demonstrated in situ in rat carcass. The implantable device has dimensions 13 mm × 15 mm and stores 87.5 mJ, providing a self-powering time of 8.5 s transmitting through tissue. We utilize an all-solid-state flexible supercapacitor of breakdown voltage 0.8 V and capacitance 400 mF to harvest incoming wireless power, followed by a boost converter CMOS that drives an active wireless transmitter at 1.5 V at 2.4 GHz in the industrial, scientific, and medical (ISM) band. The DC/DC converter component and switching frequency selection were guided by genetic algorithm analysis and use digital feedback to control the pulse width modulation (PWM), which slowly modifies the duty cycle to control output voltage fluctuations. This implantable medical device system presents the roadmap for batteryless energy harvesting in vivo and in clinical environments, exhibiting the highest operating storage density of 450 μJ/mm2 reported to date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Armand, J.-M. Tarascon, Building better batteries. Nature 451(7179), 652–657 (2008)

    Article  Google Scholar 

  2. S. Arnon, D. Bhastekar, D. Kedar, A. Tauber, A comparative study of wireless communication network configurations for medical applications. IEEE Wirel. Commun. 10(1), 56–61 (2003)

    Article  Google Scholar 

  3. M. Arsalan, M.H. Ouda, L. Marnat, T.J. Ahmad, A. Shamim, K.N. Salama, A 5.2 GHz, 0.5 mW RF powered wireless sensor with dual on-chip antennas for implantable intraocular pressure monitoring, in Microwave Symposium Digest (IMS), 2013 IEEE MTT-S International 2013, pp. 1–4. IEEE

  4. R.J. Baker, CMOS: circuit design, layout, and simulation, vol. 1 (Wiley, Hoboken, 2008)

    Book  Google Scholar 

  5. H. Banba, H. Shiga, A. Umezawa, T. Miyaba, T. Tanzawa, S. Atsumi, K. Sakui, A CMOS bandgap reference circuit with sub-1-V operation. IEEE J. Solid-State Circuits 34(5), 670–674 (1999)

    Article  Google Scholar 

  6. R.A. Bercich, J. Joseph, O.Z. Gall, J. Maeng, Y.J. Kim, P.P. Irazoqui, in Implantable Device for Intramuscular Myoelectric Signal Recording. 34th Annual International Conference of the IEEE EMBS (2012)

  7. R.A. Bercich, D.R. Duffy, P.P. Irazoqui, Far-field RF powering of implantable devices: safety considerations. IEEE Trans. Biomed. Eng. 60(8), 2107–2112 (2013)

    Article  Google Scholar 

  8. H. Bhamra, Y.-J. Kim, J. Joseph, J. Lynch, O.Z. Gall, H. Mei, C. Meng, J.-W. Tsai, P. Irazoqui, A, Batteryless, Crystal-free, Multinode Synchronized SoC “Bionode” for Wireless Prosthesis Control. IEEE J. Solid-State Circuits 50(11), 2714–2727 (2015)

    Article  Google Scholar 

  9. H. Bhamra, J. Lynch, M. Ward, P. Irazoqui, A noise-power-area optimized biosensing front end for wireless body sensor nodes and medical implantable devices. IEEE Trans. Very Large Scale Integr. VLSI Syst. 25, 2917 (2017)

    Article  Google Scholar 

  10. H. Bhamra, J.-W. Tsai, Y.-W. Huang, Q. Yuan, P. Irazoqui, 21.3 A sub-mm 3 wireless implantable intraocular pressure monitor microsystem, in Solid-State Circuits Conference (ISSCC), 2017 IEEE International 2017, pp. 356-357. IEEE

  11. A. Borna, K. Najafi, A low power light weight wireless multichannel microsystem for reliable neural recording. IEEE J. Solid-State Circuits 49(2), 439–451 (2014)

    Article  Google Scholar 

  12. J.A. Bossard, L. Lin, S. Yun, L. Liu, D.H. Werner, T.S. Mayer, Near-ideal optical metamaterial absorbers with super-octave bandwidth. ACS Nano 8(2), 1517–1524 (2014)

    Article  Google Scholar 

  13. S. Brenna, F. Padovan, A. Neviani, A. Bevilacqua, A. Bonfanti, A.L. Lacaita, A 64-Channel 965-μW Neural Recording SoC With UWB Wireless Transmission in 130-nm CMOS. IEEE Trans. Circuits Syst. II Express Briefs 63(6), 528–532 (2016)

    Article  Google Scholar 

  14. A. Burke, Ultracapacitors: why, how, and where is the technology. J. Power Sources 91(1), 37–50 (2000)

    Article  MathSciNet  Google Scholar 

  15. A.P. Chandrakasan, N. Verma, D.C. Daly, Ultralow-power electronics for biomedical applications. Ann Rev Biomed Eng 10, 247 (2008)

    Article  Google Scholar 

  16. L. Chao, C.-Y. Tsui, W.-H. Ki, A batteryless vibration-based energy harvesting system for ultra low power ubiquitous applications, in 2007 IEEE International Symposium on Circuits and Systems 2007, pp. 1349–1352. IEEE

  17. J. Charthad, M.J. Weber, T.C. Chang, A. Arbabian, A mm-sized implantable medical device (IMD) with ultrasonic power transfer and a hybrid bi-directional data link. IEEE J. Solid-State Circuits 50(8), 1741–1753 (2015)

    Article  Google Scholar 

  18. S. Chattopadhyay, N. Choudhary, Genetic algorithm based approach for low power combinational circuit testing, in VLSI Design, 2003. Proceedings. 16th International Conference on 2003, pp. 552–557. IEEE

  19. E.Y. Chow, S. Chakraborty, W.J. Chappell, P.P. Irazoqui, Mixed-signal integrated circuits for self-contained sub-cubic millimeter biomedical implants, in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2010 IEEE International 2010, pp. 236–237. IEEE

  20. E.Y. Chow, A.L. Chlebowski, P.P. Irazoqui, A miniature-implantable RF-wireless active glaucoma intraocular pressure monitor. IEEE Trans. Biomed. Circuits Syst. 4(6), 340–349 (2010)

    Article  Google Scholar 

  21. P. Cong, N. Chaimanonart, W.H. Ko, D.J. Young, A wireless and batteryless 10-bit implantable blood pressure sensing microsystem with adaptive RF powering for real-time laboratory mice monitoring. IEEE J. Solid-State Circuits 44(12), 3631–3644 (2009)

    Article  Google Scholar 

  22. B.E. Conway, Electrochemical supercapacitors: scientific fundamentals and technological applications (Springer, Berlin, 2013)

    Google Scholar 

  23. A. González, E. Goikolea, J.A. Barrena, R. Mysyk, Review on supercapacitors: technologies and materials. Renew. Sustain. Energy Rev. 58, 1189–1206 (2016)

    Article  Google Scholar 

  24. Y.-T. Huang, R. Rieger, An OOK body-channel transceiver front-end ASIC for distributed force measurement. Journal of Signal Processing Systems 64(2), 177–185 (2011)

    Article  Google Scholar 

  25. R.A. Huggins, Supercapacitors and electrochemical pulse sources. Solid State Ionics 134(1–2), 179–195 (2000)

    Article  Google Scholar 

  26. J. Jang, D. Berdy, J. Lee, D. Peroulis, B. Jung, A wireless condition monitoring system powered by a Sub-100/spl mu/W vibration energy harvester. IEEE Trans. Circuits Syst. I Regul. Pap. 60(4), 1082–1093 (2013)

    Article  Google Scholar 

  27. J. Kalupson, D. Ma, C.A. Randall, R. Rajagopalan, K. Adu, Ultrahigh-power flexible electrochemical capacitors using binder-free single-walled carbon nanotube electrodes and hydrogel membranes. The Journal of Physical Chemistry C 118(6), 2943–2952 (2014)

    Article  Google Scholar 

  28. E.G. Kilinc, G. Conus, C. Weber, B. Kawkabani, F. Maloberti, C. Dehollain, A system for wireless power transfer of micro-systems in-vivo implantable in freely moving animals. IEEE Sens. J. 14(2), 522–531 (2014)

    Article  Google Scholar 

  29. Y.-J. Kim, H.S. Bhamra, J. Joseph, P.P. Irazoqui, An ultra-low-power RF energy-harvesting transceiver for multiple-node sensor application. IEEE Trans. Circuits Syst. II Express Briefs 62(11), 1028–1032 (2015)

    Article  Google Scholar 

  30. P.C. Krause, O. Wasynczuk, S.D. Sudhoff, S. Pekarek, Analysis of electric machinery and drive systems, vol. 75 (Wiley, Hoboken, 2013)

    Book  Google Scholar 

  31. Q. Liu, M.H. Nayfeh, S.-T. Yau, Brushed-on flexible supercapacitor sheets using a nanocomposite of polyaniline and carbon nanotubes. J. Power Sources 195(21), 7480–7483 (2010)

    Article  Google Scholar 

  32. C. Lu, V. Raghunathan, K. Roy, Efficient design of micro-scale energy harvesting systems. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 1(3), 254–266 (2011)

    Article  Google Scholar 

  33. M. Mark, Y. Chen, C. Sutardja, C. Tang, S. Gowda, M. Wagner, D. Werthimer, J. Rabaey, A 1 mm 3 2Mbps 330fJ/b transponder for implanted neural sensors, in 2011 Symposium on VLSI Circuits-Digest of Technical Papers 2011

  34. C. Meng, C. Liu, L. Chen, C. Hu, S. Fan, Highly flexible and all-solid-state paperlike polymer supercapacitors. Nano Lett. 10(10), 4025–4031 (2010)

    Article  Google Scholar 

  35. C. Meng, O.Z. Gall, P.P. Irazoqui, A flexible super-capacitive solid-state power supply for miniature implantable medical devices. Biomed. Microdevice 15(6), 973–983 (2013)

    Article  Google Scholar 

  36. V. Misra, A. Bozkurt, B. Calhoun, T. Jackson, J.S. Jur, J. Lach, B. Lee, J. Muth, Ö. Oralkan, M. Öztürk, Flexible technologies for self-powered wearable health and environmental sensing. Proc. IEEE 103(4), 665–681 (2015)

    Article  Google Scholar 

  37. R. Muller, H.-P. Le, W. Li, P. Ledochowitsch, S. Gambini, T. Bjorninen, A. Koralek, J.M. Carmena, M.M. Maharbiz, E. Alon, A minimally invasive 64-channel wireless μECoG implant. IEEE J. Solid-State Circuits 50(1), 344–359 (2015)

    Article  Google Scholar 

  38. N.M. Neihart, R.R. Harrison, Micropower circuits for bidirectional wireless telemetry in neural recording applications. IEEE Trans. Biomed. Eng. 52(11), 1950–1959 (2005)

    Article  Google Scholar 

  39. R. Saraswat, E. Rodriguez-Villegas, A low emission, low power non-linear frequency modulation based transmitter for implanted devices, in 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2013, pp. 826–829. IEEE

  40. Y.-C. Shih, T. Shen, B.P. Otis, A 2.3 W wireless intraocular pressure/temperature monitor. IEEE J. Solid-State Circuits 46(11), 2592–2601 (2011)

    Article  Google Scholar 

  41. A. Shukla, A. Banerjee, M. Ravikumar, A. Jalajakshi, Electrochemical capacitors: technical challenges and prognosis for future markets. Electrochim. Acta 84, 165–173 (2012)

    Article  Google Scholar 

  42. M. Waltari, K. Halonen, Reference voltage driver for low-voltage CMOS A/D converters, in Electronics, Circuits and Systems, 2000. ICECS 2000. The 7th IEEE International Conference on 2000, pp. 28–31. IEEE

  43. H.A. Wheeler, Fundamental limitations of small antennas. Proceedings of the IRE 35(12), 1479–1484 (1947)

    Article  Google Scholar 

  44. A. Wong, D. McDonagh, O. Omeni, C. Nunn, M. Hernandez-Silveira, A. Burdett, Sensium: An ultra-low-power wireless body sensor network platform: design & application challenges, in Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE 2009, pp. 6576–6579. IEEE

  45. G. Xiong, C. Meng, R.G. Reifenberger, P.P. Irazoqui, T.S. Fisher, Graphitic Petal Electrodes for All-Solid-State Flexible Supercapacitors. Advanced Energy Materials 4(3), 1300515 (2014)

    Article  Google Scholar 

  46. Y. Zhang, F. Zhang, Y. Shakhsheer, J.D. Silver, A. Klinefelter, M. Nagaraju, J. Boley, J. Pandey, A. Shrivastava, E.J. Carlson, A batteryless 19 W MICS/ISM-band energy harvesting body sensor node SoC for ExG applications. IEEE J. Solid-State Circuits 48(1), 199–213 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Henry Zhang for his assistance in device assembly and packaging. The authors would like to acknowledge Emily Cook for helpful discussions on multivibrator circuits. This work was sponsored by the Defense Advanced Research Projects Agency (DARPA) MTO under the auspices of Dr. Jack Judy through Space and Naval Warfare Systems Center, Pacific Grant/Contract No. N66001-11-1-4029.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oren Z. Gall.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gall, O.Z., Meng, C., Bhamra, H. et al. A Batteryless Energy Harvesting Storage System for Implantable Medical Devices Demonstrated In Situ. Circuits Syst Signal Process 38, 1360–1373 (2019). https://doi.org/10.1007/s00034-018-0915-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-0915-4

Keywords

Navigation