Skip to main content
Log in

Energy-Efficient 8-Point DCT Approximations: Theory and Hardware Architectures

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Due to its remarkable energy compaction properties, the discrete cosine transform (DCT) is employed in a multitude of compression standards, such as JPEG and H.265/HEVC. Several low-complexity integer approximations for the DCT have been proposed for both 1D and 2D signal analyses. The increasing demand for low-complexity, energy-efficient methods requires algorithms with even lower computational costs. In this paper, new 8-point DCT approximations with very low arithmetic complexity are presented. The new transforms are proposed based on pruning state-of-the-art DCT approximations. The proposed algorithms were assessed in terms of arithmetic complexity, energy retention capability, and image compression performance. In addition, a metric combining performance and computational complexity measures was proposed. Results showed good performance and extremely low computational complexity. Introduced algorithms were mapped into systolic-array digital architectures and physically realized as digital prototype circuits using FPGA technology and mapped to 45 nm CMOS technology. All hardware-related metrics showed low resource consumption of the proposed pruned approximate transforms. The best proposed transform according to the introduced metric presents a reduction in power consumption of 21–25 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. USC-SIPI Image Database (1977). http://sipi.usc.edu/database/

  2. K.M. Abadir, J.R. Magnus, Matrix Algebra (Cambridge University Press, Cambridge, 2005)

    Book  MATH  Google Scholar 

  3. N. Ahmed, T. Natarajan, K.R. Rao, Discrete cosine transform. IEEE Trans. Comput. C–23(1), 90–93 (1974). doi:10.1109/T-C.1974.223784

    Article  MathSciNet  MATH  Google Scholar 

  4. N. Ahmed, K.R. Rao, Orthogonal Transforms for Digital Signal Processing (Springer, Berlin, 1975)

    Book  MATH  Google Scholar 

  5. R. Airoldi, O. Anjum, F. Garzia, A.M. Wyglinski, J. Nurmi, Energy-efficient fast Fourier transforms for cognitive radio systems. IEEE Micro 30(6), 66–76 (2010). doi:10.1109/MM.2010.84

    Article  Google Scholar 

  6. I.F. Akyildiz, T. Melodia, K.R. Chowdhury, A survey on wireless multimedia sensor networks. Comput. Netw. 51, 921–960 (2007)

    Article  Google Scholar 

  7. Y. Arai, T. Agui, M. Nakajima, A fast DCT-SQ scheme for images. Transactions of the IEICE E–71(11), 1095–1097 (1988)

    Google Scholar 

  8. F.M. Bayer, R.J. Cintra, DCT-like transform for image compression requires 14 additions only. Electron. Lett. 48(15), 919–921 (2012). doi:10.1049/el.2012.1148

    Article  Google Scholar 

  9. V. Bhaskaran, K. Konstantinides, Image and Video Compression Standards (Kluwer Academic Publishers, Boston, 1997)

    Book  Google Scholar 

  10. R.E. Blahut, Fast Algorithms for Signal Processing (Cambridge University Press, Cambridge, 2010)

    Book  MATH  Google Scholar 

  11. S. Bouguezel, M.O. Ahmad, M.N.S. Swamy, Low-complexity \(8\times 8\) transform for image compression. Electron. Lett. 44(21), 1249–1250 (2008). doi:10.1049/el:20082239

    Article  Google Scholar 

  12. S. Bouguezel, M.O. Ahmad, M.N.S. Swamy, A fast 8\(\times \)8 transform for image compression. In 2009 International Conference on Microelectronics (ICM) (2009), p. 74–77. doi:10.1109/ICM.2009.5418584

  13. S. Bouguezel, M.O. Ahmad, M.N.S. Swamy, Binary discrete cosine and Hartley transforms. IEEE Trans. Circuits Syst. I Regul. Pap. 60(4), 989–1002 (2013)

    Article  MathSciNet  Google Scholar 

  14. V. Britanak, P. Yip, K.R. Rao, Discrete Cosine and Sine Transforms (Academic Press, San Diego, 2007)

    Book  Google Scholar 

  15. I. Carugati, S. Maestri, P. Donato, D. Carrica, M. Benedetti, Variable sampling period filter PLL for distorted three-phase systems. IEEE Trans. Power Electron. 27(1), 321–330 (2012). doi:10.1109/TPEL.2011.2149542

    Article  Google Scholar 

  16. W.H. Chen, C. Smith, S. Fralick, A fast computational algorithm for the discrete cosine transform. IEEE Trans. Commun. 25(9), 1004–1009 (1977). doi:10.1109/TCOM.1977.1093941

    Article  MATH  Google Scholar 

  17. R.J. Cintra, F.M. Bayer, A DCT approximation for image compression. IEEE Signal Process. Lett. 18(10), 579–582 (2011)

    Article  Google Scholar 

  18. R.J. Cintra, F.M. Bayer, C.J. Tablada, Low-complexity 8-point DCT approximations based on integer functions. Sig. Process. 99, 201–214 (2014). doi:10.1016/j.sigpro.2013.12.027

    Article  Google Scholar 

  19. A. Docef, The quantized DCT and its application to DCT-based video coding. IEEE Trans. Image Process. 11, 177–187 (2002)

    Article  Google Scholar 

  20. D.F. Elliot, K.R. Rao, Fast Transforms: Algorithms, Analyses, Applications (Academic Press, San Diego, 1982)

    Google Scholar 

  21. M. Ehrgott, Multicriteria Optimization (Springer, Berlin, 2005)

    MATH  Google Scholar 

  22. E. Feig, S. Winograd, Fast algorithms for the discrete cosine transform. IEEE Trans. Signal Process. 40(9), 2174–2193 (1992)

    Article  MATH  Google Scholar 

  23. D.J.L. Gall, The MPEG video compression algorithm. Sig. Process. Image Commun. 4, 129–140 (1992)

    Article  Google Scholar 

  24. T.I. Haweel, A new square wave transform based on the DCT. Sig. Process. 82, 2309–2319 (2001)

    Article  MATH  Google Scholar 

  25. H.S. Hou, A fast recursive algorithm for computing the discrete cosine transform. IEEE Trans. Acoustic Signal Speech Process. 6(10), 1455–1461 (1987)

    Google Scholar 

  26. Y.M. Huang, J.L. Wu, C.L. Chang, A generalized output pruning algorithm for matrix–vector multiplication and its application to compute pruning discrete cosine transform. IEEE Trans. Signal Process. 48, 561–563 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. International Organisation for Standardisation: Generic coding of moving pictures and associated audio information - Part 2: Video. ISO/IEC JTC1/SC29/WG11 - coding of moving pictures and audio, ISO (1994)

  28. International Telecommunication Union: ITU-T recommendation H.261 version 1: Video codec for audiovisual services at \(p \times 64\) kbits. Tech. rep., ITU-T (1990)

  29. International Telecommunication Union: ITU-T recommendation H.263 version 1: Video coding for low bit rate communication. Tech. rep., ITU-T (1995)

  30. International Telecommunication Union: High efficiency video coding: Recommendation ITU-T H.265. Tech. rep., ITU-T Series H: Audiovisual and Multimedia Systems (2013)

  31. J.H. Kim, J.G. Kim, Y.H. Ji, Y.C. Jung, C.Y. Won, An islanding detection method for a grid-connected system based on the Goertzel algorithm. IEEE Trans. Power Electron. 26(4), 1049–1055 (2011). doi:10.1109/TPEL.2011.2107751

    Article  Google Scholar 

  32. N. Kimura, S. Latifi, A survey on data compression in wireless sensor networks, in International Conference on Information Technology: Coding and Computing, ITCC, vol 2 (2005), p. 8–13

  33. N. Kouadria, N. Doghmane, D. Messadeg, S. Harize, Low complexity DCT for image compression in wireless visual sensor networks. Electron. Lett. 49(24), 1531–1532 (2013)

    Article  Google Scholar 

  34. V. Lecuire, L. Makkaoui, J.M. Moureaux, Fast zonal DCT for energy conservation in wireless image sensor networks. Electron. Lett. 48(2), 125–127 (2012)

    Article  Google Scholar 

  35. K. Lengwehasatit, A. Ortega, Scalable variable complexity approximate forward DCT. IEEE Trans. Circuits Syst. Video Technol. 14(11), 1236–1248 (2004). doi:10.1109/TCSVT.2004.835151

    Article  Google Scholar 

  36. M.L. Liou, Visual telephony as an ISDN application. IEEE Commun. Mag. 28, 30–38 (1990)

    Article  Google Scholar 

  37. C. Loeffler, A. Ligtenberg, G.S. Moschytz, Practical fast 1-D DCT algorithms with 11 multiplications, in ICASSP International Conference on Acoustics, Speech, and Signal Processing, vol. 2 (1989), pp. 988–991

  38. L. Makkaoui, V. Lecuire, J. Moureaux, Fast zonal DCT-based image compression for wireless camera sensor networks, in 2nd International Conference on Image Processing Theory Tools and Applications (IPTA) (2010), pp. 126–129

  39. H. Malepati, Digital Media Processing: DSP Algorithms Using C (Google e-Livro). Newnes (2010)

  40. P. Meher, S.Y. Park, B. Mohanty, K.S. Lim, C. Yeo, Efficient integer DCT architectures for HEVC. IEEE Trans. Circuits Syst. Video Technol. 24(1), 168–178 (2014). doi:10.1109/TCSVT.2013.2276862

    Article  Google Scholar 

  41. J.R. Ohm, G.J. Sullivan, H. Schwarz, T.K. Tan, T. Wiegand, Comparison of the coding efficiency of video coding standards—including High Efficiency Video Coding (HEVC). IEEE Trans. Circuits Syst. Video Technol. 22(12), 1669–1684 (2012). doi:10.1109/TCSVT.2012.2221192

    Article  Google Scholar 

  42. A. Oppenheim, R. Schafer, Discrete-Time Signal Processing, 3rd edn. (Pearson, London, 2010)

    MATH  Google Scholar 

  43. J.S. Park, W.J. Nam, S.M. Han, S. Lee, 2-D large inverse transform (\(16\times 16\), \(32\times 32\)) for HEVC (High Efficiency Video Coding). J. Semicond. Technol. Sci. 2, 203–211 (2012). doi:10.5573/JSTS.2012.12.2.203

    Article  Google Scholar 

  44. W.B. Pennebaker, J.L. Mitchell, JPEG Still Image Data Compression Standard (Van Nostrand Reinhold, New York, NY, 1992)

    Google Scholar 

  45. U.S. Potluri, A. Madanayake, R.J. Cintra, F.M. Bayer, S. Kulasekera, A. Edirisuriya, Improved 8-point approximate DCT for image and video compression requiring only 14 additions. IEEE Trans. Circuits Syst. I. 61(6), 1727–1740 (2014). doi:10.1109/TCSI.2013.2295022

  46. M.T. Pourazad, C. Doutre, M. Azimi, P. Nasiopoulos, HEVC: the new gold standard for video compression—How does HEVC compare with H.264/AVC? IEEE Consum. Electron. Mag. 1(3), 36–46 (2012). doi:10.1109/MCE.2012.2192754

    Article  Google Scholar 

  47. K.R. Rao, P. Yip, Discrete Cosine Transform: Algorithms, Advantages, Applications (Academic Press, San Diego, 1990)

    Book  MATH  Google Scholar 

  48. K.R. Rao, P. Yip, The Transform and Data Compression Handbook (CRC Press LLC, Boca Raton, 2001)

    MATH  Google Scholar 

  49. N. Roma, L. Sousa, Efficient hybrid DCT-domain algorithm for video spatial downscaling. EURASIP J. Adv. Signal Process. 2007(2), 30–30 (2007). doi:10.1155/2007/57291

    MATH  Google Scholar 

  50. A. Skodras, Fast discrete cosine transform pruning. IEEE Trans. Signal Process. 42(7), 1833–1837 (1994). doi:10.1109/78.298293

    Article  Google Scholar 

  51. G.J. Sullivan, J.R. Ohm, W.J. Han, T. Wiegand, Overview of the high efficiency video coding (HEVC) standard. IEEE Trans. Circuits Syst. Video Technol. 22(12), 1649–1668 (2012)

    Article  Google Scholar 

  52. J.V. Team, Recommendation H.264 and ISO/IEC 14 496–10 AVC: Draft ITU-T recommendation and final draft international standard of joint video specification. Tech. rep., ITU-T (2003)

  53. G. Wallace, The JPEG still picture compression standard. IEEE Trans. Consum. Electron. 38(1), xviii—xxxiv (1992). doi:10.1109/30.125072

  54. L. Wang, X. Zhou, G. Sobelman, R. Liu, Generic mixed-radix FFT pruning. IEEE Signal Process. Lett. 19(3), 167–170 (2012). doi:10.1109/LSP.2012.2184283

    Article  Google Scholar 

  55. Z. Wang, Pruning the fast discrete cosine transform. IEEE Trans. Commun. 39(5), 640–643 (1991). doi:10.1109/26.87153

    Article  Google Scholar 

  56. Z. Wang, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli, Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004). doi:10.1109/TIP.2003.819861

    Article  Google Scholar 

  57. P. Whatmough, M. Perrett, S. Isam, I. Darwazeh, VLSI architecture for a reconfigurable spectrally efficient FDM baseband transmitter. IEEE Trans. Circuits Syst. I Regul. Pap. 59(5), 1107–1118 (2012). doi:10.1109/TCSI.2012.2185304

    Article  MathSciNet  Google Scholar 

  58. T. Wiegand, G.J. Sullivan, G. Bjontegaard, A. Luthra, Overview of the H.264/AVC video coding standard. IEEE Trans. Circuits Syst. Video Technol. 13(7), 560–576 (2003)

    Article  Google Scholar 

  59. S. Winograd, Arithmetic Complexity of Computations. CBMS-NSF Regional Conference Series in Applied Mathematics (1980)

  60. L. Zhang, H. Li, SR-SIM: a fast and high performance iqa index based on spectral residual, in 19th IEEE International Conference on Image Processing (ICIP) (2012), pp. 1473–1476

  61. Xiph.org video test media (2014). https://media.xiph.org/video/derf/

  62. High Efficiency Video Coding (HEVC). https://hevc.hhi.fraunhofer.de/

Download references

Acknowledgments

This work was partially supported by CNPq, FACEPE, and FAPERGS (Brazil), and by the College of Engineering at the University of Akron, Akron, OH, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fábio M. Bayer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cintra, R.J., Bayer, F.M., Coutinho, V.A. et al. Energy-Efficient 8-Point DCT Approximations: Theory and Hardware Architectures. Circuits Syst Signal Process 35, 4009–4029 (2016). https://doi.org/10.1007/s00034-015-0233-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-015-0233-z

Keywords

Navigation