Skip to main content

Advertisement

Log in

Changes in dissolved organic matter and microbial activity in runoff waters of boreal mires after restoration

  • Research article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

A considerable proportion of boreal mires have been drained for soil amelioration purposes. In response to drainage-induced degradation, restoration practices have been implemented in recent decades. Restoration by raising the water level is often followed by changes in the quality of runoff waters, especially in concentrations of dissolved organic carbon (DOC), nitrogen (N) and phosphorus (total P, PO4-P). We studied how mire restoration affected bacterial production (BP), bacterial growth efficiency (BGE%) and respiration (R) in mire runoff waters from spruce swamps and Sphagnum pine bogs in south-central Finland. The quality of runoff water was monitored for 8 years (2008–2015) and bacterial activity was measured during 3 years (2010–2012) at runoff weir sites, including two pristine controls, one drained control and four treatment sites. The concentrations of DOC, N and P increased for 3–5 years after restoration. The increased availability of nutrients was followed by doubled BP (from ca. 0.34 to 0.88 µmol C L−1 d−1, averages of restored sites) and BGE% (from ca. 2.7 to 9.2%), whereas microbial respiration was only slightly increased. However, bacterial activity in mire waters was low compared with those generally measured in river and lake waters. This was presumably related to the recalcitrant quality of the mire-originated DOC, which was not clearly influenced by restoration. Dissolved organic matter (DOM) of low bioavailability contributes to browning of headwaters. As our study was focused only on short-term (1–5 years) effects, more research is needed for evaluating long-term impacts of peatland origin DOM on carbon fluxes, microbial activity and food webs of recipient aquatic ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aapala K, Similä M (2014) Introduction in ecological restoration in drained peatlands. In: Similä M, Aapala K, Penttinen J (eds) Ecological restoration in drained peatlands—best practices from Finland, Metsähallitus. Natural Heritage Service, Finnish Environment Institute, Syke, pp 3–5

    Google Scholar 

  • Akkanen J, Tuikka A, Kukkonen JVK (2012) On the borderline of dissolved and particulate organic matter: Partitioning and bioavailability of polycyclic aromatic hydrocarbons. Ecotoxicol Environ Saf 78:91–98

    Article  CAS  PubMed  Google Scholar 

  • Andersson S, Nilsson SI, Saetre P (2000) Leaching of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in mor humus as affected by temperature and pH. Soil Biol Biochem 32:1–10

    Article  CAS  Google Scholar 

  • Arvola L, Tulonen T (1998) Effects of allochthonous dissolved organic matter and inorganic nutrients on the growth of bacteria and algae from a highly humic lake. Environ Int 24:509–509

    Article  CAS  Google Scholar 

  • Arvola L, Kankaala P, Tulonen T, Ojala A (1996) Effects of phosphorus and allochthonous humic matter enrichment on the metabolic processes and community structure of plankton in a boreal lake (Lake Pääjärvi). Can J Fish Aquat Sci 53:1646–1662

    Article  Google Scholar 

  • Asmala E, Autio R, Kaartokallio H, Pitkänen L, Stedmon C, Thomas D (2013) Bioavailability of riverine dissolved organic matter in three Baltic Sea estuaries and the effect of catchment land use. Biogeosciences 10:6969–6986

    Article  CAS  Google Scholar 

  • Bååth E (1996) Adaptation of soil bacterial communities to prevailing pH in different soils. FEMS Microbiol Ecol 19:227–237

    Article  Google Scholar 

  • Berggren M, del Giorgio PA (2015) Distinct patterns of microbial metabolism associated to riverine dissolved organic carbon of different source and quality. J Geophys Res Biogeosci 120:989–999, https://doi.org/10.1002/2015JG002963

    Article  CAS  Google Scholar 

  • Berggren M, Laudon H, Jansson M (2007) Landscape regulation of bacterial growth efficiency in boreal freshwaters. Global Biogeochem Cy. https://doi.org/10.1029/2006GB002844

    Google Scholar 

  • Berggren M, Laudon H, Jansson M (2009) Aging of allochthonous organic carbon regulates bacterial production in unproductive boreal lakes. Limnol Oceanogr 54:1333–1342

    Article  CAS  Google Scholar 

  • Broder T, Knorr K-H, Biester H (2016) DOM quality in a peatland and forest headwater stream: seasonal and event characteristics. J Hydrol Earth Syst Sci. https://doi.org/10.5194/hess-2016-377

    Google Scholar 

  • Brunner W, Blaser P (1989) Mineralization of soil organic matter and added carbon substrates in two acidic soils with high non-exchangeable aluminum. J Plant Nutr Soil Sci 152:367–372

    CAS  Google Scholar 

  • Eiler A, Langenheder S, Bertilsson S, Tranvik LJ (2003) Heterotrophic bacterial growth efficiency and community structure at different natural organic carbon concentrations. Appl Environ Microbiol 69:3701–3709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farjalla VF, Marinho CC, Faria BM, Amado AM, Esteves F, Bozelli RL, Giroldo D (2009) Synergy of fresh and accumulated organic matter to bacterial growth. Microb Ecol 57:657–666

    Article  CAS  PubMed  Google Scholar 

  • Fenner N, Freeman C (2011) Drought-induced carbon loss in peatlands. Nat Geosci 4:895–900

    Article  CAS  Google Scholar 

  • Freeman C, Fenner N, Ostle NJ, Kang H, Dowrick DJ, Reynolds B, Lock MA, Sleep D, Hughes S, Hudson J (2004) Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels. Nature 430:195–198

    Article  CAS  PubMed  Google Scholar 

  • Glatzel S, Kalbitz K, Dalva M, Moore T (2003) Dissolved organic matter properties and their relationship to carbon dioxide efflux from restored peat bogs. Geoderma 113:397–411

    Article  CAS  Google Scholar 

  • Guillemette F, Del Giorgio P (2011) Reconstructing the various facets of dissolved organic carbon bioavailability in freshwater ecosystems. Limnol Oceanogr 56:734–748

    Article  CAS  Google Scholar 

  • Guillemette F, McCallister LS, Del Giorgio P (2013) Differentiating the degradation dynamics of algal and terrestrial carbon within complex natural dissolved organic carbon in temperate lakes. J Geophys Res 118:1–11

    Google Scholar 

  • Haapalehto T, Kotiaho JS, Matilainen R, Tahvanainen T (2014) The effect of long-term drainage and subsequent restoration on water table level and pore water chemistry in boreal peatlands. J Hydrol 519:1493–1505

    Article  CAS  Google Scholar 

  • Hernes PJ, Benner R (2003) Photochemical and microbial degradation of dissolved lignin phenols: Implications for the fate of terrigenous dissolved organic matter in marine environments. J Geophys Res 108(C9):3291. https://doi.org/10.1029/2002JC001421

    Article  Google Scholar 

  • Höll B, Fiedeler S, Jungkunst H, Kalbitz K, Freibauer A, Drösler M, Stahr K (2009) Characteristics of dissolved organic matter following 20 years of peatland restoration. Sci Tot Environ 408:78–83

    Article  Google Scholar 

  • Hulatt CJ, Kaartokallio H, Asmala E, Autio R, Stedmon CA, Sonninen E, Oinonen M, Thomas DN (2014) Bioavailability and radiocarbon age of fluvial dissolved organic matter (DOM) from a northern peatland-dominated catchment: effect of land-use change. Aquat Sci 76:393–404

    Article  CAS  Google Scholar 

  • Jansson M, Bergström A-K, Lymer D, Vrede K, Kaelsson J (2006) Bacterioplankton growth and nutrient use efficiencies under variable organic carbon and inorganic phosphorus ratios. Microb Ecol 52:358–364

    Article  CAS  PubMed  Google Scholar 

  • Jennings E, Järvinen M, Allott N, Arvola L, Moore K, Naden P, Aonghusa CA, Nõges T, Weyhenmeyer GA (2010) Impacts of climate on the flux of dissolved organic carbon from catchments. Aquat Ecol 4:199–220

    Google Scholar 

  • Jones RI (1992) The influence of humic substances on lacustrine planktonic food chains. Hydrobiologia 229:73–91

    Article  CAS  Google Scholar 

  • Kieckbusch J, Schrautzer J (2007) Nitrogen and phosphorus dynamics of a re-wetted shallow-flooded peatland. Sci Total Environ 380:3–12

    Article  CAS  PubMed  Google Scholar 

  • Kiikkilä O, Smolander A, Ukonmaanaho L (2014) Properties of dissolved organic matter in peatland: implications for water quality after harvest. Vadose Zone J 13:9. https://doi.org/10.2136/vzj2013.08.0155

    Article  Google Scholar 

  • Kirchman D, K’Nees E, Hodson R (1985) Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Appl Environ Microbiol 49(3):599–607

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kortelainen P (1993) Content of total organic carbon in Finnish lakes and its relationship to catchment characteristics. Can J Fish Aquat Sci 50:1477–1483

    Article  CAS  Google Scholar 

  • Koskinen M, Sallantaus T, Vasander H (2011) Post-restoration development of organic carbon and nutrient leaching from two ecohydrologically different peatland sites. Ecol Eng 37:1008–1016

    Article  Google Scholar 

  • Koskinen M, Tahvanainen T, Sarkkola S, Menbery M, Laurén A, Sallantaus T, Ronkanen A-K, Tolvanen A, Koivusalo H, Nieminen M (2017) Restoration of nutrient-rich forestry-drained peatlands poses a risk for high exports of dissolved organic carbon, nitrogen, and phosphorus. Sci Total Environ 586:858–869

    Article  CAS  PubMed  Google Scholar 

  • Kritzberg ES, Ekström SM (2012) Increasing iron concentration in surface waters—a factor behind brownification? Biogeosciences 9:1465–1478

    Article  CAS  Google Scholar 

  • Larsen S, Andersen T, Hessen DO (2011) Climate change predicted to cause severe increase of organic carbon in lakes. Glob Chang Biol 17:1186–1192

    Article  Google Scholar 

  • Lepistö A, Futter M, Kortelainen P (2014) Almost 50 years of monitoring shows that climate, not forestry, controls long-term organic carbon fluxes in a large boreal watershed. Glob Chang Biol 20:1225–1237

    Article  PubMed  Google Scholar 

  • Martin-Creuzburg D, Beck B, Freese HM (2011) Food quality of heterotrophic bacteria for Daphnia magna: evidence for a limitation by sterols. FEMS Microbiol Ecol 76:592–601

    Article  PubMed  Google Scholar 

  • Monteith DT, Stoddard JL, Evans CD, Wit HA, Forsius M, Høgåsen T, Wilander A, Skjelkvåle BL, Jeffries DS, Vuorenmaa J, Keller B, Kopácek J, Vesely J (2007) Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450:537–540

    Article  CAS  PubMed  Google Scholar 

  • Moran MA, Hodson RE (1990) Bacterial production on humic and nonhumic components of dissolved organic carbon. Limnol Oceanogr 35:1744–1756

    Article  CAS  Google Scholar 

  • Nieminen M (2004) Export of dissolved organic carbon, nitrogen and phosphorus following clear-cutting of three Norway spruce forest growing on drained peatlands in southern Finland. Silva Fenn 38:123–132

    Google Scholar 

  • Nieminen M, Koskinen M, Sarkkola S, Laurén A, Kaila A, Kiikkilä O, Nieminen TM, Ukonmaanaho L (2015) Dissolved organic carbon export from harvested peatland forests with differing site characteristics. Water Air Soil Pollut. https://doi.org/10.1007/s11270-015-2444-0

    Google Scholar 

  • Nieminen M, Sallantaus T, Ukonmaanaho L, Nieminen TM, Sarkkola S (2017) Nitrogen and phosphorus concentrations in discharge from drained peatland forests are increasing. Sci Total Environ 609:974–981

    Article  CAS  PubMed  Google Scholar 

  • Palviainen M, Laurén A, Launiainen S, Piirainen S (2016) Predicting the export and concentrations of organic carbon, nitrogen and phosphorus in boreal lakes by catchment characteristics and land use: A practical approach. Ambio. https://doi.org/10.1007/s13280-016-0789-2

    PubMed  PubMed Central  Google Scholar 

  • Patrick WH, Khalid RA (1974) Phosphate release and sorption by soils and sediments: effect of aerobic and anaerobic conditions. Science 186:53–55

    Article  CAS  PubMed  Google Scholar 

  • Peacock M, Evans C, Fenner N, Freeman C, Gough R, Jones T, Lebron I (2014) UV-visible absorbance spectroscopy as a proxy for peatland dissolved 1 organic carbon (DOC) quantity and quality: considerations on wavelength 2 and absorbance degradation. Environ Sci Process Impacts 16:1445–1461

    Article  CAS  PubMed  Google Scholar 

  • Peuravuori J, Pihlaja K (1997) Molecular size distribution and spectroscopic properties of aquatic humic substances. Anal Chim Acta 337:133–149

    Article  CAS  Google Scholar 

  • Pumpanen J, Lindén A, Miettinen H, Kolari P, Ilvesniemi H, Mammarella I, Hari P, Nikinmaa E, Heinonsalo J, Bäck J, Ojala A, Berninger F, Vesala T (2014) Precipitation and net ecosystem exchange are the most important drivers of DOC flux in upland boreal catchments. J Geophys Res Biogeosci 119:1861–1878

    Article  Google Scholar 

  • Räike A, Kortelainen P, Mattsson T, Thomas DN (2016) Long-term trends (1975–2014) in the concentrations and export of carbon from Finnish rivers to the Baltic sea: organic and inorganic components compared. Aquat Sci 78:505–523

    Article  Google Scholar 

  • Räsänen N, Kankaala P, Tahvanainen T, Akkanen J, Saarnio S (2014) Short-term effects of phosphorus addition and pH rise on bacterial utilization and biodegradation of dissolved organic carbon (DOC) from boreal mires. Aquat Ecol 48:435–446

    Article  Google Scholar 

  • Räsänen N, Kankaala P, Tahvanainen T, Akkanen J, Saarnio S (2016) Effects of mire-originated dissolved organic carbon, nitrogen, and phosphorus on microbial activity in boreal headwaters. Inland Waters 6:65–76

    Article  Google Scholar 

  • Roiha T, Peura S, Cussin M, Rautio M (2016) Allochthonous carbon is a major regulator to bacterial growth and community composition in subarctic freshwaters. Nature. https://doi.org/10.1038/srep34456

    Google Scholar 

  • Ronkanen A-K, Irannezhad M, Menberu M, Marttila H, Penttinen J, Kløve (2016) Effect of restoration and drainage on peatland hydrology: a study of data before and after restoration at 46 sites in Finland. In: Water resources and environmental engineering research group, University of Oulu, Natural Heritage Services of Finland, Metsähallitus, Vantaa, p 84

  • Rousk J, Brookes PC, Bååth E (2009) Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Appl Environ Microbiol 75:1589–1596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sallantaus T, Kondelin H, Heikkilä R (2003) Hydrological problems associated with mire restoration. In: Heikkilä R, Lindholm T (eds) Biodiversity and conservation of boreal nature. The Finnish Environment, Vantaa, pp 256–261

    Google Scholar 

  • Salonen K, Vähätalo A (1994) Photochemical mineralization of dissolved organic matter in lake Skjervatjern. Environ Int 20:307–312

    Article  CAS  Google Scholar 

  • Seekell DA, Lapierre J-F, Ask J, Bergström A-K, Deininger A, Rodriques P, Karlsson J (2015) The influence of dissolved organic carbon on primary production in northern lakes. Limnol Oceanogr 60:1276–1285

    Article  CAS  Google Scholar 

  • Shah Z, Adamst WA, Haven CDV (1990) Composition and activity of the microbial population in an acidic upland soil and effects of liming. Soil Biol Biochem 22:257–263

    Article  Google Scholar 

  • Smith E, Prairie Y (2004) Bacterial metabolism and growth efficiency in lakes: the importance of phosphorus availability. Limnol Oceanogr 49:137–147

    Article  CAS  Google Scholar 

  • Solomon C, Jones S, Weidel B, Buffam I, Fork M, Karlsson J, Larsen S, Lennon J, Read J, Sadro S, Saros J (2015) Ecosystem consequences of changing inputs of terrestrial dissolved organic matter to lakes: current knowledge and future challenges. Ecosystems. https://doi.org/10.1007/s10021-015-9848-y

    Google Scholar 

  • Taipale SJ, Brett M, Pulkkinen K, Kainz MJ (2012) The influence of bacteria dominated diets on Daphnia magna somatic growth, reproduction, and lipid composition. FEMS Microbiol Ecol 82:50–62. https://doi.org/10.1111/j.1574-6941.2012.01406x

    Article  CAS  PubMed  Google Scholar 

  • Tranvik L (1990) Bacterioplankton growth on fractions of dissolved organic carbon of different molecular weights from humic and clear waters. Appl Environ Microbiol 56:1672–1677

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tulonen T (1993) Bacterial production in a mesohumic lake estimated from (14)C-leucine incorporation rate. Microb Ecol 26:201–217

    Article  CAS  PubMed  Google Scholar 

  • Vähätalo AV, Salonen K, Salkinoja-Salonen M, Hatakka A (1999) Photochemical mineralization of synthetic lignin in lake water indicates enhanced turnover of aromatic organic matter under solar radiation. Biodegradation 10:415–420

    Article  PubMed  Google Scholar 

  • Vähätalo A, Salonen K, Münster U, Järvinen M, Wetzel R (2003) Photochemical transformation of allochthonous organic matter provides bioavailable nutrients in a humic lake. Arch Hydrobiol 156:287–314

    Article  Google Scholar 

  • Vartiainen T, Liimatainen A, Kauranen P (1987) The use of TSK size exclusion columns in determination of the quality and quantity of humus in raw waters and drinking waters. Sci Total Environ 62:75–84

    Article  CAS  Google Scholar 

  • von Wachenfeldt E, Tranvik LJ (2008) Sedimentation in boreal lakes—the role of flocculation of allochthonous organic matter in the water column. Ecosyst 11:803–814  

    Article  CAS  Google Scholar 

  • Wallin M, Weyhenmeyer G, Bastviken D, Chmiel H, Peter S, Sobek S, Klemedtsson L (2015) Temporal control on concentration, character and export of dissolved organic carbon in two hemiboreal headwater streams draining contrasting catchments. J Geophys Res Biogeosci. https://doi.org/10.1002/2014JG002814

    Google Scholar 

  • Weishaar J, Aiken G, Bergamaschi B, Fram M, Fujii R, Mopper K (2003) Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ Sci Technol 37:4702–4708

    Article  CAS  PubMed  Google Scholar 

  • Wetzel RG, Hatcher PG, Bianchi TS (1995) Natural photolysis by ultraviolet irradiance of recalcitrant dissolved organic matter to simple substrates for rapid bacterial metabolism. Limnol Oceanogr 40:1369–1380

    Article  CAS  Google Scholar 

  • Weyhenmeyer GA, Fröberg M, Karltun E, Khalili M, Kothawala D, Temnerud J, Tranvik LJ (2012) Selective decay of terrestrial organic carbon during transport from land to sea. Glob Chang Biol 18:349–355. https://doi.org/10.1111/j.1365-2486.2011.02544.x

    Article  Google Scholar 

  • Wheeler RD, Proctor MCF (2000) Ecological gradients, subdivisions and terminology of north-west European mires. J Ecol 88:187–203

    Article  Google Scholar 

  • Wyatt KH, Turetsky MR (2015) Algae alleviate carbon limitation of heterotrophic bacteria in a boreal peatland. J Ecol 103:1165–1171

    Article  CAS  Google Scholar 

  • Xenopoulos MA, Lodge DM, Frentress J, Kreps TA, Bridgham SD, Grossman E, Jackson CJ (2003) Regional comparisons of watershed determinants of dissolved organic carbon in temperate lakes from the Upper Great Lakes region and selected regions globally. Limnol Oceanogr 48:2321–2334

    Article  CAS  Google Scholar 

  • Zak D, Gelbrecht J (2007) The mobilization of phosphorus, organic carbon and ammonium in the initial stage of fen rewetting (a case study from Germany). Biogeochem 85(2):141–151

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the Maa- ja vesitekniikan tuki ry and Maj and Tor Nessling foundation. Assistance for the sampling was provided by the Natural Heritage Services of Finland and Pekka Vesterinen (Metsähallitus). Thanks to the former laboratory of the Ecological Research Institute, and to Marja Noponen and Leena Pääkkönen for help with the laboratory analyses. We are also grateful to two anonymous reviewers for their suggestions improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noora Räsänen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

27_2018_569_MOESM1_ESM.docx

Supplementary Table 1. The grid co-ordinates of the study sites in the Parks and Wildlife Finland monitoring program (DOCX 12 KB)

27_2018_569_MOESM2_ESM.docx

Suppl. Table 2. Precipitation sum (mm) during May-November and the average concentration (±SD) of dissolved organic carbon (DOC), total nitrogen (TN), nitrite-nitrate (NO2-NO3-N), ammonium (NH4-N), total phosphorus (TP) and phosphate (PO4-P) at the study sites in 2008–2015. ResSp, ResB1 and ResB2 were restored (bold text) at the end of 2010 and ResB3 at the end of 2011 (DOCX 33 KB)

27_2018_569_MOESM3_ESM.docx

Suppl. Table 3. Annual average (±SE) values of qualitative characteristics of dissolved organic matter (DOM) at the study sites: SUVA254, absorbance at 254 nm (a254), absorbance ratio a254/a356 based on spectrometric measurements and the percentage of the large molecular fraction analyzed with High-performance Size Exclusion Chromatography (HPSEC). The values for post-restoration years are in bold. Annual within-site differences were tested with one-way ANOVA. Different superscript letters denote significant differences between the study years (Tukey’s post hoc test). Model predicted vs. residual plots were visually inspected in each case and no serious deviation from normality were found. The analyses are not strictly valid in a statistical sense as the assumptions of independence of observations were neglected (DOCX 26 KB)

27_2018_569_MOESM4_ESM.docx

Suppl. Table 4. Pearson correlation (Corr.) coefficients from the bog sites (ResB1, -2 and -3, NatB and DrB). The Pearson correlation is significant at **0.01 and *0.05. The correlation coefficients are not strictly valid in a statistical sense as the assumptions of independence of observations were neglected in these analyses (DOCX 37 KB)

27_2018_569_MOESM5_ESM.docx

Suppl. Table 5. Pearson correlation (Corr.) coefficients from the spruce swamp sites (ResSp and NatSp). The Pearson correlation is significant at **0.01 and *0.05. The correlation coefficients are not strictly valid in a statistical sense as the assumptions of independence of observations were neglected in these analyses (DOCX 36 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Räsänen, N., Kankaala, P., Tahvanainen, T. et al. Changes in dissolved organic matter and microbial activity in runoff waters of boreal mires after restoration. Aquat Sci 80, 20 (2018). https://doi.org/10.1007/s00027-018-0569-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00027-018-0569-0

Keywords

Navigation