Skip to main content
Log in

Inductive Moving Frames

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

An inductive implementation of the equivariant moving frame method is introduced for both finite-dimensional Lie group actions and infinite-dimensional Lie pseudo-groups. Given two Lie (pseudo-)groups \({\mathcal{G}}\) and \({\mathcal{H}}\) with \({\mathcal{G} \subset \mathcal{H}}\), the inductive method streamlines the construction of a moving frame for \({\mathcal{H}}\) using the already constructed moving frame for \({\mathcal{G}}\). As a by-product, a systematic procedure for expressing \({\mathcal{H}}\)-invariant quantities in terms of their \({\mathcal{G}}\)-invariant counterparts is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, I.M.: The variational bicomplex. Utah State Technical Report (1989). http://math.usu.edu/~fg_mp

  2. Calabi E., Olver P.J., Shakiban C., Tannenbaum A., Haker S.: Differential and numerically invariant signature curves applied to object recognition. Int. J. Comput. Vis. 26, 107–135 (1998)

    Article  Google Scholar 

  3. Fels M., Olver P.J.: Moving coframes. II. Regularization and theoretical foundations. Acta Appl. Math. 55, 127–208 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Hann C.E., Hickman M.S.: Projective curvature and integral invariants. Acta Appl. Math. 74, 177–193 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Guggenheimer H.W.: Differential Geometry. McGraw-Hill, New York (1963)

    MATH  Google Scholar 

  6. Kamran N., Olver P.J.: Equivalence problems for first order Lagrangians on the line. J. Differ. Equ. 80, 32–78 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kamran N., Olver P.J.: Equivalence of differential operators. SIAM J. Math. Anal. 20, 1172–1185 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kim P., Olver P.J.: Geometric integration via multi-space. Regul. Chaotic Dyn. 9, 213–226 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kogan, I.A.: Inductive approach to Cartan’s moving frame method with applications to classical invariant theory. Ph.D. thesis, University of Minnesota (2000)

  10. Kogan I.A.: Inductive construction of moving frames. Contemp. Math. 285, 157–170 (2001)

    Article  Google Scholar 

  11. Kogan I.A.: Two algorithms for a moving frame construction. Can. J. Math. 55, 266–291 (2003)

    Article  MATH  Google Scholar 

  12. Kogan I., Olver P.J.: Invariant Euler–Lagrange equations and the invariant variational bicomplex. Acta Appl. Math. 76, 137–193 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mansfield E.L.: A Practical Guide to the Invariant Calculus. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  14. Olver P.J.: Equivalence, Invariants, and Symmetry. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  15. Olver P.J.: Moving frames and singularities of prolonged group actions. Sel. Math. 6, 41–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Olver P.J.: Geometric foundations of numerical algorithms and symmetry. Appl. Algebra Eng. Commun. Comput. 11, 417–436 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Olver P.J.: Joint invariant signatures. Found. Comput. Math. 1, 3–67 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Olver P.J.: Recursive moving frames. Results Math. 60, 423–452 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Olver, P.J.: Lectures on moving frames. In: Levi, D., Olver, P., Thomova, Z., Winternitz, P. (eds.) Symmetries and Integrability of Difference Equations. London Mathematical Society. Lecture Note Series, vol. 381, pp. 207–246. Cambridge University Press, Cambridge (2011)

  20. Olver P.J., Pohjanpelto J.: Maurer–Cartan forms and the structure of Lie pseudo-groups. Sel. Math. 11, 99–126 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Olver P.J., Pohjanpelto J.: Moving frames for Lie pseudo-groups. Can. J. Math. 60, 1336–1386 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Olver P.J., Pohjanpelto J.: Differential invariant algebras of Lie pseudo-groups. Adv. Math. 222, 1746–1792 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Olver P.J., Pohjanpelto J.: Persistence of freeness for pseudo-group actions. Arkiv Mat. 50, 165–182 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Spivak M.: A Comprehensive Introduction to Differential Geometry, vol. 3, 3rd edn. Publish or Perish, Inc., Houston (1999)

    Google Scholar 

  25. Thompson R., Valiquette F.: On the cohomology of the invariant Euler–Lagrange complex. Acta Appl. Math. 116, 199–226 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rebelo, R., Valiquette, F.: Symmetry preserving numerical schemes for partial differential equations and their numerical tests. J. Differ. Equ. Appl. (2012, to appear). arXiv:1110.5921

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis Valiquette.

Additional information

Supported by an AARMS Postdoctoral Fellowship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valiquette, F. Inductive Moving Frames. Results. Math. 64, 37–58 (2013). https://doi.org/10.1007/s00025-012-0294-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00025-012-0294-2

Mathematics Subject Classification (2010)

Keywords

Navigation