Skip to main content
Log in

Tsunami Detection by High Frequency Radar Beyond the Continental Shelf: II. Extension of Time Correlation Algorithm and Validation on Realistic Case Studies

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

In past work, tsunami detection algorithms (TDAs) have been proposed, and successfully applied to offline tsunami detection, based on analyzing tsunami currents inverted from high-frequency (HF) radar Doppler spectra. With this method, however, the detection of small and short-lived tsunami currents in the most distant radar ranges is challenging due to conflicting requirements on the Doppler spectra integration time and resolution. To circumvent this issue, in Part I of this work, we proposed an alternative TDA, referred to as time correlation (TC) TDA, that does not require inverting currents, but instead detects changes in patterns of correlations of radar signal time series measured in pairs of cells located along the main directions of tsunami propagation (predicted by geometric optics theory); such correlations can be maximized when one signal is time-shifted by the pre-computed long wave propagation time. We initially validated the TC-TDA based on numerical simulations of idealized tsunamis in a simplified geometry. Here, we further develop, extend, and apply the TC algorithm to more realistic tsunami case studies. These are performed in the area West of Vancouver Island, BC, where Ocean Networks Canada recently deployed a HF radar (in Tofino, BC), to detect tsunamis from far- and near-field sources, up to a 110 km range. Two case studies are considered, both simulated using long wave models (1) a far-field seismic, and (2) a near-field landslide, tsunami. Pending the availability of radar data, a radar signal simulator is parameterized for the Tofino HF radar characteristics, in particular its signal-to-noise ratio with range, and combined with the simulated tsunami currents to produce realistic time series of backscattered radar signal from a dense grid of cells. Numerical experiments show that the arrival of a tsunami causes a clear change in radar signal correlation patterns, even at the most distant ranges beyond the continental shelf, thus making an early tsunami detection possible with the TC-TDA. Based on these results, we discuss how the new algorithm could be combined with standard methods proposed earlier, based on a Doppler analysis, to develop a new tsunami detection system based on HF radar data, that could increase warning time. This will be the object of future work, which will be based on actual, rather than simulated, radar data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abadie, S., Harris, J. C., Grilli, S. T., & Fabre, R. (2012). Numerical modeling of tsunami waves generated by the flank collapse of the Cumbre Vieja Volcano (La Palma, Canary Islands): tsunami source and near field effects. Journal of Geophysical Research, 117(C05), 030. doi:10.1029/2011JC007646.

    Google Scholar 

  • Anderson, P.S. (2015). Improving end-to-end tsunami warning for risk reduction on Canada’s West coast. Tech. Rep. CSSP-2013-TI-1033, Task 3 Report, Canadian Safety and Security Program.

  • Anderson, P.S., Gow, G.A. (2004). Tsunamis and coastal communities in British Columbia: An assessment of the BC Tsunami Warning System and related risk reduction practices. Tech. Rep. PS4-13/2004E-PDF, Public Safety and Emergency Preparedness Canada.

  • Barrick, D.E. (1972a). First-order theory and analysis of MF/HF/VHF scatter from the sea. IEEE Transactions on Antennas and Propagation, 20(1), 2–10.

    Article  Google Scholar 

  • Barrick, D.E. (1972b). Remote sensing of sea state by radar. In: IEEE International Conference on Engineering in the Ocean Environment, Ocean 72, IEEE, pp. 186–192.

  • Barrick, D.E. (1972c). Remote sensing of sea state by radar. In: Remote sensing of the Troposphere, VE Derr, Editor, US Government, vol 12.

  • Barrick, D.E. (1972d). Remote sensing of the troposphere. Remote Sensing of Sea State by Radar, pp. 1–46.

  • Barrick, D.E. (1978). HF radio oceanography: A review. Boundary-Layer Meteorology, 13(1–4), 23–43.

    Article  Google Scholar 

  • Barrick, D.E. (1979). A coastal radar system for tsunami warning. Remote Sensing of Environment, 8(4), 353–358.

    Article  Google Scholar 

  • Benjamin, L.R., Flament, P., Cheung, K.F., Luther, D.S. (2016). The 2011 Tohoku tsunami south of Oahu: high-frequency Doppler radio observations and model simulations of currents. Journal of Geophysical Research. doi:10.1002/2015JC011207

  • Bernard, E., & Titov, V. (2016). Evolution of tsunami warning systems and products. Philosophical Transactions of the Royal Society of London A, 373(2053), 20140371. doi:10.1098/rsta.2014.0371.

    Article  Google Scholar 

  • Cherniawsky, J.Y., Titov, V., Wang, K., & Li, J.Y. (2007). Numerical simulations of tsunami waves and currents for southern Vancouver Island from a Cascadia megathrust earthquake. Pure and Applied Geophysics, 164(2–3), 465–492. doi:10.1002/2015JC011207.

    Article  Google Scholar 

  • Crombie, D.D. (1955). Doppler spectrum of sea echo at 13.56 Mc./s. Nature, 175, 681–682.

    Article  Google Scholar 

  • Dean, R.G., & Dalrymple, R.A. (1984). Water Wave Mechanics for Engineers and Scientists. New Jersey: Prentice-Hall.

    Google Scholar 

  • Dzvonkovskaya, A. (2012). Ocean surface current measurements using HF radar during the 2011 Japan tsunami hitting Chilean coast. In: Geoscience and Remote Sensing Symp. (IGARSS), 2012 IEEE Intl., IEEE, pp. 7605–7608. doi: 10.1109/IGARSS.2012.6351867.

  • Dzvonkovskaya, A., Gurgel, K.W., Pohlmann, T., Schlick, T., Xu, J. (2009) Simulation of tsunami signatures in ocean surface current maps measured by HF radar. In: OCEANS 2009-EUROPE, IEEE, pp. 1–6.

  • Fine, I., Rabinovich, A., Bornhold, B., Thomson, R., & Kulikov, E. (2005). The Grand Banks landslide-generated tsunami of November 18, 1929: Preliminary analysis and numerical modelling. Marine Geology, 215, 45–57. doi:10.1016/j.margeo.2004.11.007.

    Article  Google Scholar 

  • Fine, I., Cherniawsky, J., Rabinovich, A., & Stephenson, F. (2008). Numerical modeling and observations of tsunami waves in Alberni Inlet and Barkley Sound, British Columbia. Pure and Applied Geophysics, 165(11–12), 2019–2044.

    Article  Google Scholar 

  • Fine, I., Cherniawsky, J., Thomson, R., Rabinovich, A., & Krassovski, M. (2013). Observations and numerical modeling of the 2012 Haida Gwaii tsunami off the coast of British Columbia. Pure and Applied Geophysics, 172(3–4), 699–718. doi:10.1007/s00024-014-1012-7.

    Google Scholar 

  • Forget, P. (2015). Noise properties of HF radar measurement of ocean surface currents. Radio Science, 50(8), 764–777.

    Article  Google Scholar 

  • Greene, H., Murai, L., Watts, P., Maher, N., Fisher, M. A., Paull, C., et al. (2005). Submarine landslides in the Santa Barbara Channel as potential tsunami sources. Natural Hazards and Earth System Science, 6(1), 63–88.

    Article  Google Scholar 

  • Grilli, S.T., Ioualalen, M., Asavanant, J., Shi, F., Kirby, J.T., & Watts, P. (2007). Source constraints and model simulation of the December 26, 2004 Indian Ocean tsunami. Journal of Waterway Port Coastal and Ocean Engineering, 133(6), 414–428. doi:10.1061/(ASCE)0733-950X(2007) 133:6(414).

    Article  Google Scholar 

  • Grilli, S.T., Dubosq, S., Pophet, N., Pérignon, Y., Kirby, J., & Shi, F. (2010). Numerical simulation and first-order hazard analysis of large co-seismic tsunamis generated in the Puerto Rico trench: near-field impact on the North shore of Puerto Rico and far-field impact on the US East Coast. Natural Hazards and Earth System Sciences, 10, 2109–2125. doi:10.5194/nhess-2109-2010.

    Article  Google Scholar 

  • Grilli, S.T., Harris, J. C., Tajalli-Bakhsh, T., Masterlark, T.L., Kyriakopoulos, C., Kirby, J.T., et al. (2013). Numerical simulation of the 2011 Tohoku tsunami based on a new transient FEM co-seismic source: Comparison to far- and near-field observations. Pure and Applied Geophysics, 170, 1333–1359. doi:10.1007/s00024-012-0528-y.

    Article  Google Scholar 

  • Grilli, S.T., O’Reilly, C., Harris, J., Tajalli-Bakhsh, T., Tehranirad, B., Banihashemi, S., et al. (2015). Modeling of SMF tsunami hazard along the upper US East Coast: Detailed impact around Ocean City, MD. Natural Hazards, 76(2), 705–746. doi:10.1007/s11069-014-1522-8.

    Article  Google Scholar 

  • Grilli, S.T., Grosdidier, S., & Guérin, C.A. (2016). Tsunami detection by High Frequency Radar beyond the continental shelf. I. Algorithms and validation on idealized case studies. Pure and Applied Geophysics, 173(12), 3895–3934. doi:10.1007/s00024-015-1193-8.

    Article  Google Scholar 

  • Guérin, C.A., Grilli, S., Moran, P., Grilli, A., Lado, T. (2017). Tsunami detection by high frequency radar using a time-correlation algorithm: Performance analysis based on data from a HF radar in British Columbia. In: Proc. 27th Offshore and Polar Engng. Conf., ISOPE17, San Francisco, USA, June 2017 (pp. 930–936).

  • Gurgel, K.W., Dzvonkovskaya, A., Pohlmann, T., Schlick, T., & Gill, E. (2011). Simulation and detection of tsunami signatures in ocean surface currents measured by HF radar. Ocean Dynamics, 61(10), 1495–1507.

    Article  Google Scholar 

  • Heron, M.L., Prytz, A., Heron, S.F., Helzel, T., Schlick, T., Greenslade, D.J., et al. (2008). Tsunami observations by coastal ocean radar. International Journal of Remote Sensing, 29(21), 6347–6359.

    Article  Google Scholar 

  • Hinata, H., Fujii, S., Furukawa, K., Kataoka, T., Miyata, M., Kobayashi, T., et al. (2011). Propagating tsunami wave and subsequent resonant response signals detected by HF radar in the Kii Channel, Japan. Estuarine, Coastal and Shelf Science, 95(1), 268–273.

    Article  Google Scholar 

  • Horrillo, J., Grilli, S., Nicolsky, D., Roeber, V., & Zhang, J. (2014). Performance benchmarking tsunami operational models for NTHMP’s’ inundation mapping activities. Pure and Applied Geophysics, 172, 869–884. doi:10.1007/s00024-014-0891-y.

    Article  Google Scholar 

  • Insua, T., Grilli, A.R., Grilli, S.T., Shelby, M., Wang, K., Gao, D., Cherniawsky, J., Harris, J.C., Heesemann, M., McLean, S., Moran, K. (2015). Preliminary tsunami hazard assessment in British Columbia, Canada. EOS Trans AGU 96(52): Fall Meet. Suppl., Abstract NH23C–1890.

  • Ioualalen, M., Asavanant, J., Kaewbanjak, N., Grilli, S. T., Kirby, J.T., & Watts, P. (2007). Modeling the 26th December 2004 Indian Ocean tsunami: Case study of impact in Thailand. Journal of Geophysical Research, 112(C07), 024. doi:10.1029/2006JC003850.

    Google Scholar 

  • Kânoğlu, U., Titov, V., Bernard, E., & Synolakis, C. (2015). Tsunamis: Bridging science, engineering and society. Philosophical Transactions of the Royal Society A, 373(2053), 20140369. doi:10.1098/rsta.2014.0369.

    Article  Google Scholar 

  • Kirby, J.T., Shi, F., Tehranirad, B., Harris, J.C., & Grilli, S.T. (2013a). Dispersive tsunami waves in the ocean: Model equations and sensitivity to dispersion and Coriolis effects. Ocean Modeling, 62, 39–55. doi:10.1016/j.ocemod.2012.11.009.

    Article  Google Scholar 

  • Kirby, S., Scholl, D., Von Huene, R., Wells, R. (2013b). Alaska earthquake source for the SAFRR tsunami scenario. Tech. Rep. USGS Report, 2013, US Geological Survey Open-File . http://pubs.usgs.gov/of/2013/1170/b/. The SAFRR (Science Application for Risk Reduction) Tsunami Scenario.

  • Lipa, B., Barrick, D., Saitoh, S. I., Ishikawa, Y., Awaji, T., Largier, J., et al. (2011). Japan tsunami current flows observed by HF radars on two continents. Remote Sensing, 3(8), 1663–1679.

    Article  Google Scholar 

  • Lipa, B., Isaacson, J., Nyden, B., & Barrick, D. (2012a). Tsunami arrival detection with high frequency (HF) radar. Remote Sensing, 4(5), 1448–1461.

    Article  Google Scholar 

  • Lipa, B., Barrick, D., Isaacson, J. (2016). Tsunami, InTech, chap Chapter 5: Coastal Tsunami Warning with Deployed HF Radar Systems, pp 73–112. Environmental Sciences.

  • Lipa, B.J., Barrick, D.E., Bourg, J., & Nyden, B.B. (2006). HF radar detection of tsunamis. Journal of Oceanography, 62(5), 705–716.

    Article  Google Scholar 

  • Lipa, B.J., Barrick, D.E., Diposaptono, S., Isaacson, J., Jena, B.K., Nyden, B., et al. (2012). High frequency (HF) radar detection of the weak 2012 Indonesian tsunamis. Remote Sensing, 4, 2944–2956.

    Article  Google Scholar 

  • Lipa, B.J., Parikh, H., Barrick, D.E., Roarty, H., & Glenn, S. (2014). High frequency radar observations of the June 2013 US East Coast meteotsunami. Natural Hazards, 74, 109–122.

    Article  Google Scholar 

  • Lynett, P., & Thirty-seven alii. (2017). Inter-model analysis of tsunami-induced coastal currents. Ocean Modeling, 114, 14–32. doi:10.1016/j.ocemod.2017.04.003.

    Article  Google Scholar 

  • Ma, G., Shi, F., & Kirby, J.T. (2012). Shock-capturing non-hydrostatic model for fully dispersive surface wave processes. Ocean Modeling, 43–44, 22–35. doi:10.1016/j.ocemod.2011.12.002.

    Article  Google Scholar 

  • McAdoo, B., & Watts, P. (2004). Tsunami hazard from submarine landslides on the Oregon continental slope. Marine Geology, 203(3), 235–245.

    Article  Google Scholar 

  • Myers, E., & Baptista, A. (2001). Analysis of factors influencing simulations of the 1993 Hokkaido Nansei-Oki and 1964 Alaska tsunamis. Natural Hazards, 23, 1–28.

    Article  Google Scholar 

  • Rabinovich, A., Thomson, R., & Fine, I. (2013). The 2010 Chilean tsunami off the west coast of Canada and the northwest coast of the United States. Pure and Applied Geophysics, 170, 1529–1565. doi:10.1007/s00024-012-0541-1.

    Article  Google Scholar 

  • Shi, F., Kirby, J. T., Harris, J.C., Geiman, J.D., & Grilli, S.T. (2012). A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation. Ocean Modeling, 43–44, 36–51. doi:10.1016/j.ocemod.2011.12.004.

    Article  Google Scholar 

  • Stewart, R.H., & Joy, J.W. (1974). HF radio measurements of surface currents. Deep Sea Research and Oceanographic Abstracts, 21(12), 1039–1049. Elsevier.

    Article  Google Scholar 

  • Tang, L., Titov, V., Moore, C., & Wei, Y. (2016). Real-time assessment of the 16 september 2015 Chile Tsunami and implications for near-field forecast. Pure Appl Geophysics,. doi:10.1007/s00024-015-1226-3.

    Google Scholar 

  • Tappin, D.R., Watts, P., & Grilli, S.T. (2008). The Papua New Guinea tsunami of 1998: Anatomy of a catastrophic event. Natural Hazards and Earth System Sciences, 8, 243–266.

    Article  Google Scholar 

  • Tappin, D.R., Grilli, S.T., Harris, J.C., Geller, R.J., Masterlark, T., Kirby, J.T., et al. (2014). Did a submarine landslide contribute to the 2011 Tohoku tsunami? Marine Geology, 357, 344–361. doi:10.1016/j.margeo.2014.09.043.

    Article  Google Scholar 

  • Tehranirad, B., Shi, F., Kirby, J.T., Harris, J.C., Grilli, S.T. (2011). Tsunami benchmark results for fully nonlinear Boussinesq wave model FUNWAVE-TVD, Version 1.0. Tech. Rep. No. CACR-11-02, Univ. of Delaware.

  • Tehranirad, B., Harris, J., Grilli, A., Grilli, S., Abadie, S., Kirby, J., et al. (2015). Far-field tsunami hazard in the north Atlantic basin from large scale flank collapses of the Cumbre Vieja volcano, La Palma. Pure and Applied Geophysics, 172(12), 3589–3616. doi:10.1007/s11069-014-1522-8.

    Article  Google Scholar 

  • Thomson, R., Fine, I., Rabinovich, A., Mihly, S., Davis, E., Heesemann, M., et al. (2011). Observation of the 2009 Samoa tsunami by the NEPTUNE-Canada cabled observatory: Test data for an operational regional tsunami forecast model. Geophysical Research Letters, 38(L11), 701. doi:10.1029/2011GL046728.

    Google Scholar 

  • Thomson, R.E., Rabinovich, A.B., Fine, I.V., Sinnott, D.C., McCarthy, A., Sutherland, N.A.S., et al. (2009). Meteorological tsunamis on the coasts of British Columbia and Washington. Physics and Chemistry of the Earth Parts A/B/C, 34(17), 971–988.

    Article  Google Scholar 

  • Titov, V., Rabinovich, A., Mofjeld, H., Thomson, R., & Gonzalez, F. (2005). The global reach of the 26 December 2004 Sumatra tsunami. Science, 309(5743), 2045–2048.

    Article  Google Scholar 

  • Whitmore, P. (1993). Expected tsunami amplitudes and currents along the North American coast for Cascadia Subduction Zone earthquakes. Natural Hazards, 8, 59–73.

    Article  Google Scholar 

  • Yelisetti, S., Spence, G., & Riedel, M. (2014). Role of gas hydrates in slope failure on frontal ridge of northern Cascadia margin. Geophysical Journal International, 199(1), 441–458.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge ONC for providing support for this research and access to their radar system data, and Helzel Messtechnik GmbH (in particular Dr. A. Dzvonkovskaya) for technical support for processing radar data. C.-A. Guérin acknowledges the French CNRS, the University of Toulon, and the French-American Fulbright commission for support during his research stay at URI. Finally, we thank the editor and anonymous reviewers for their in-depth reviews and comments that helped improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphan T. Grilli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grilli, S.T., Guérin, CA., Shelby, M. et al. Tsunami Detection by High Frequency Radar Beyond the Continental Shelf: II. Extension of Time Correlation Algorithm and Validation on Realistic Case Studies. Pure Appl. Geophys. 174, 3003–3028 (2017). https://doi.org/10.1007/s00024-017-1619-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-017-1619-6

Keywords

Navigation